
Distributed Matrix Product State Simulations
of Large-Scale Quantum Circuits

Aidan Dang

A thesis presented for the degree of

Master of Science
under the supervision of

Dr. Charles Hill and Prof. Lloyd Hollenberg

School of Physics
The University of Melbourne

20 October 2017

Abstract

Before large-scale, robust quantum computers are developed, it is valuable to be able to clas-
sically simulate quantum algorithms to study their properties. To do so, we developed a nu-
merical library for simulating quantum circuits via the matrix product state formalism on
distributed memory architectures. By examining the multipartite entanglement present across
Shor’s algorithm, we were able to effectively map a high-level circuit of Shor’s algorithm to the
one-dimensional structure of a matrix product state, enabling us to perform a simulation of a
specific 60 qubit instance in approximately 14 TB of memory: potentially the largest non-trivial
quantum circuit simulation ever performed. We then applied matrix product state and ma-
trix product density operator techniques to simulating one-dimensional circuits from Google’s
quantum supremacy problem with errors and found it mostly resistant to our methods.

1

Declaration

I declare the following as original work:

• In chapter 2, the theoretical background described up to but not including section 2.5
had been established in the referenced texts prior to this thesis. The main contribution
to the review in these sections is to provide consistency amongst competing conventions
and document the capabilities of the numerical library we developed in this thesis. The
rest of chapter 2 is original unless otherwise noted.

• The techniques and experimental results of chapters 3 and 4 are original unless otherwise
stated.

I declare that the code for our numerical library was written solely by the author, where any
external libraries called have otherwise been referenced in this text.

Aidan Dang
October 2017

Acknowledgements

Most importantly, I give my gratitude to Doctor Charles Hill and Professor Lloyd Hollenberg for
their guidance and vision in directing this work, for providing me with the resources necessary
to produce the results of this thesis and for pushing me to realise my potential.

In aiding the development of our numerical library and the production of our results, I
acknowledge that this work was supported by resources provided by the Pawsey Supercom-
puting Centre with funding from the Australian Government and the Government of Western
Australia.

To The University of Melbourne, and especially the School of Physics, I am thankful to have
been in an environment that would fuel the growth of my abilities. In order that I may focus
on my studies, I would also like to thank Ms Rose Cooney, Ms Jenny de Boer and Associate
Professor Michelle Livett for greatly simplifying the daunting administrative matters that I was
faced with.

Finally, to all the friends, classmates, teachers and students that I have ever had, and anyone
else I have ever learned something from, I hope that you might have gained something from
me in return.

2

Contents

1 Introduction 4

2 QCMPS Library Showcase 8
2.1 Introduction to tensor networks . 8

2.1.1 Reshape and transpose . 9
2.1.2 Contraction and tensor product . 9
2.1.3 Decomposition . 10

2.2 Quantum circuits as tensor networks . 10
2.3 Matrix Product States . 13
2.4 QCMPS . 13

2.4.1 MPS canonical form . 14
2.4.2 Contraction and decomposition . 15
2.4.3 Recanonicalisation and renormalisation 16
2.4.4 Truncation . 17
2.4.5 Measurement and reset . 18
2.4.6 Gate operations . 19

2.5 General controlled gate operations for MPS . 21
2.6 Density matrices in MPS . 24

2.6.1 Error model simulations with MPDOs 26
2.6.2 Alternate approaches for density matrix simulations 27

2.7 Comparison to existing quantum simulators . 28

3 Shor’s Algorithm Simulations 29
3.1 Review of Shor’s algorithm . 29
3.2 Entanglement in Shor’s algorithm . 31
3.3 MPS simulation approach . 32

3.3.1 Previous approaches . 32
3.3.2 Simulation through QCMPS . 33

3.4 Benchmarks . 34
3.5 Future simulations . 36

4 Google Supremacy Circuit Simulations 37
4.1 Introduction to the Google supremacy problem 37
4.2 One-Dimensional Circuit . 40

4.2.1 Porter-Thomas Convergence . 40
4.3 MPS Truncation . 40
4.4 MPDO Noise Channel Simulations . 42

5 Conclusion 45

3

Chapter 1

Introduction

Despite the vast progress made in order to realise modern computing devices from a mathe-
matical model, the Turing machine [1], this underlying model imposes limitations on the types
of problems that such a ‘classical’ computer may solve, and the efficiency with which it might
do so. Although the time required to solve a computable problem on a classical machine does
decrease if we use more or faster hardware, there exist particularly consequential problems that,
given a sufficiently large instance, may not be solved with any reasonable amount of time or
hardware using our best known classical algorithms.

This presents several paths forward. Lacking proof that our current classical algorithms
for these problems obtain solutions with optimal efficiency, one approach might be to develop
more efficient algorithms for our existing devices, an active area of research in computer science
today. Another is to subscribe to a different model of computation, in which algorithms exist
for solving these problems efficiently. Indeed, with a quantum computer based on the quantum
circuit model of computation, solutions for problems such as integer factorisation [2] may be
obtained efficiently.

The concept of these quantum machines that potentially possess some inherent speed advan-
tage over their classical counterparts motivates their physical construction, with the experimen-
tation and engineering required in their implementation needing to stave off the effects of noise
and decoherence in order to scale. Before such large-scale quantum computers can be built,
methods to simulate their specific behaviours and interactions with quantum circuits should
still prove valuable. Though the ability to perform such simulations would still be subject to
the limitations of classical computation, it may, for example, allow us to study a quantum
circuit’s resilience toward these noise effects on specific proposed hardware implementations.

Despite this quantum advantage over currently known classical algorithms for these prob-
lems, the presence of an innate advantage is still uncertain. However, in order to high-
light perceived speed differences between the quantum and classical models, several ‘quantum
supremacy’ problems have been proposed, with the aim of being efficiently solvable on quan-
tum hardware but not efficiently solvable classically. Often, these problems claim a ‘supremacy
point’, a sufficiently large instance size that a reasonable amount of classical hardware may not
solve in a reasonable amount of time; a quantum device that successfully solves problems of this
size are then said to demonstrate quantum supremacy. Currently, physical implementations of
quantum computers are unable to claim quantum supremacy.

Quantum computation and algorithms

If the states that comprise a quantum mechanical system form a d-dimensional Hilbert space
H, then n such systems form the dn-dimensional Hilbert space H⊗n. If we consider a system of
2-dimensional subsystems, then the values 0 and 1 can be assigned to these levels to produce a

4

quantum bit or qubit, the quantum counterpart to the bit in classical computation. Since a state
of this composite system resides as an element within H⊗n, familiar quantum properties such
as superposition and entanglement are applicable. For example, a collection of n bits allows us
to store exactly one value out of the 2n possible binarily representable values, whilst a set of n
quantum bits may describe a superposition of all these 2n values. It would then appear that
any speed advantage of a quantum computer arises from these exclusively quantum properties.
However, the extent to which each of these properties contributes to the perceived advantage
is not fully understood [3].

Just as classical bits are manipulated as electrical signals passing through circuits of logic
gates in a classical computer, the quantum circuit model of computation involves acting quan-
tum gates on one or more of the quantum system’s constituent subsystems. In quantum me-
chanical terms, these gates act as unitary transformations on the quantum state. Therefore,
unlike most classical logic gates, applying a quantum gate is a reversible operation, which has
consequences on the information entropy content of a state [4]. Furthermore, measurement of
a quantum state to extract information from it, such as the results of a quantum algorithm,
necessarily alters the state via a collapse of superposition and entanglement, unlike in a system
of classical bits. Quantum algorithmic design must therefore keep these constraints in mind.

It is also worth mentioning that other quantum models of computation exist. Notably, the
quantum Turing machine as a generalisation of the classical Turing machine is considered com-
putationally equivalent to the quantum circuit model [5], and implementations based on these
models are referred to as universal quantum computers. Additionally, an adiabatic quantum
computer [6] functions by initialising a system to the ground state of a simple Hamiltonian and
adiabatically evolving it so that the system remains in the ground state, but of a Hamiltonian
where this ground state encodes the solution to the relevant problem.

The efficiency of any computational algorithm often refers to its time complexity: the
scaling of the algorithm’s running time with respect to its input size. Specifically, we express an
algorithm’s time complexity in terms of its time usage’s asymptotic behaviour using Bachmann–
Landau notation. To demonstrate, classical lookup of a single item from a black-box database
of N items has an average time complexity of O(N), as each item must be sequentially queried
until the relevant entry is found. However, Grover’s algorithm [7], performed on a quantum
computer, allows this task to be performed in O(

√
N) time, resulting in a quadratic advantage

over the classical approach. When a symmetric-key cryptographic algorithm such as AES [8]
with a key of length n bits is used in place of this black-box database, the O(N = 2n) lookups
for the classical approach is reduced to O(

√
N = 2n/2) operations through Grover’s algorithm,

and therefore halving the effective key length.
An algorithm is said to be efficient if its time complexity is bounded above by some poly-

nomial. With this definition, Grover’s algorithm is not sufficient to efficiently break AES
encryption by searching through all possible keys. Factorisation of an integer of length n dig-
its is one example of a problem that can be solved in polynomial time with respect to n on
a quantum computer through Shor’s algorithm [2], but lacks any known algorithm to do so
efficiently on a classical machine. Therefore, quantum computers currently exhibit an exponen-
tial speed advantage over classical computers in integer factorisation. Many of the public-key
cryptographic protocols [9] presently used for online communications are predicated on the dif-
ficulty of integer factorisation and the discrete logarithm problem (which Shor’s algorithm also
solves efficiently), so post-quantum cryptographic protocols resistant to attacks by quantum
computers have been proposed [10] in response.

5

Supremacy problems

Given the multitude of quantum algorithms that provide a computational speedup over their
fastest known classical counterparts [11], it is still an open question in computer science as to
whether or not these quantum computers, based on the various quantum models of computation
such as the circuit model, innately possess some computational advantage over our classical
devices built upon the Turing machine. The difficulty in proving the existence of this advantage,
i.e. the existence of quantum supremacy, stems from bounding the computational power of
classical machines; though some classical algorithms are bested by quantum algorithms in
terms of their time complexity, these quantum algorithms must demonstrate their advantage
over all possible classical algorithms in order to prove quantum supremacy, and not just over
the classical algorithms that are known.

Even if quantum supremacy were theoretically possible, there still remains the experimental
challenges in building a physical machine to demonstrate it. As a physical quantum device
interacts with its environment over the course of a circuit, effects such as quantum decoherence
and noise begin to alter its internal quantum state in ways extraneous to the circuit’s gates,
potentially leading to errors in any results obtained through measurement. Quantum error
correction codes such as the surface code [12] have been developed to increase the resilience
of physical quantum computers toward noise and decoherence, at the cost of requiring greater
redundancy in the number of qubits.

Despite the theoretical and experimental challenges in demonstrating quantum supremacy,
problems designed to be efficiently solvable through a quantum model of computation but
not through any known classical algorithm have been proposed as tests [13]. Often, these are
sampling problems: a quantum device will perform some efficient manipulation of a quantum
state and sample measurements from the resulting underlying probability distribution. It is
then argued that classical computers cannot efficiently reproduce this probability distribution
to sample from, given some specification of the quantum operation involved (e.g. the quantum
circuit). In the case of boson sampling [14], the device is a linear optical quantum computer
that manipulates Fock states of input photons via a linear optical network. Given the best
known classical algorithms for simulating the results of these networks [14], it is estimated
that instances of boson sampling with 50 photons exceed the capabilities of modern classical
hardware [15].

In the quantum circuit model, IQP (instantaneous quantum polynomial-time) [16] circuits
and the circuits proposed by Google’s Boixo et al. [17] involve sampling from the measurement
results of circuits randomly generated according to a set of rules. In both examples, noise
prevents a physical quantum computer from exactly sampling from the ideal distribution. In
[17], a measure of how well a noisy quantum computer may sample from the ideal distribution
produced from one of their circuits is related to the effective per-gate error rate of the physical
implementation. This allows a physical quantum computer’s effectiveness at Google’s sampling
problem to be compared to a classical simulation’s, despite being subject to the effects of noise
and errors.

Simulation techniques

For a two-level quantum system of Hilbert space H with basis elements labelled {|0〉 , |1〉} used
to represent a qubit, the evolution of a quantum system of n qubits in state |ψ〉 through the
unitary transformations of a quantum gate takes place within the 2n-dimensional Hilbert space
H⊗n, whose basis elements are

{|0 . . . 0〉 , |0 . . . 1〉 , . . . , |1 . . . 1〉} ≡ {|0〉 ⊗ . . .⊗ |0〉 , |0〉 ⊗ . . .⊗ |1〉 , . . . , |1〉 ⊗ . . .⊗ |1〉}.

6

Computationally, |ψ〉 can be described as a vector storing its 2n complex coefficients in this basis
for its Hilbert space H⊗n, and linear operators such as the unitary gate transformations may
be applied via matrix multiplication with its matrix representation in the same basis. Software
packages [18, 19] that perform simulations of the evolution of quantum states in this manner
are accordingly referred to as state vector simulators. Despite any properties of the quantum
state that might change over the course of, say, a quantum circuit, the state vector formalism
imposes a strictO(2n) space complexity to simply store this state vector. For example, the 2 PiB
required to store an n = 48 qubit state vector with 64 bit per complex coefficient approaches the
limit of memory available to modern supercomputers [15]. Furthermore, simulating quantum
state evolution via matrix multiplication on these state vectors has an exponentially scaling
time cost. Therefore, state vector simulations cannot currently be performed efficiently on
classical hardware.

An alternative representation of a quantum state |ψ〉 might instead adaptively scale its
time and space requirements according to some physical property of the state. Based on
the idea of tensor networks [20], Vidal [21] proposed the idea of using matrix product states
(MPSs) as a representation of quantum states for simulating quantum circuits. The MPS
formalism was originally used for other applications in condensed matter physics, namely for
determining ground states of quantum systems through the density matrix renormalisation
group (DMRG) algorithm [22] and simulating the time evolution of quantum states through a
given Hamiltonian [23]. In the MPS representation of a quantum state, if subsystems are laid
out in a one-dimensional lattice, then only information about a subsystem and its entanglement
with the adjacent subsystems needs to be stored. Therefore, the space and time requirements
to store and operate on an MPS may scale with the amount of entanglement present in the
represented quantum state, where the ‘amount’ of entanglement is quantified by a particular
measure. For Hamiltonians, quantum circuits or other quantum operators that do not introduce
large amounts of entanglement, the MPS representation may be used to efficiently simulate [23]
these quantum systems on classical hardware.

Though the state vector and matrix product state formalisms are suited for simulation of
pure quantum states, modelling errors in a simulation of physical quantum hardware invites
consideration of the density operator ρ =

∑
i |ψi〉〈ψi| for mixed states. The density matrix for-

malism for representing the density operator of a d-dimensional state involves storing a matrix
of dimension d×d, and is the mixed state counterpart for the state vector formalism. Similarly,
the matrix product state formalism may be generalised to a matrix product density operator
formalism that also scales its time and space requirements for the amount of entanglement.

Outline

This thesis is focused on the development and features of our distributed-memory matrix prod-
uct state software library, QCMPS, as well as a demonstration of its capabilities by simulating
Shor’s algorithm and the Google supremacy problem. Chapter 2 provides a more formal intro-
duction to the tensor network formalism that underpins the mechanics of MPSs, and introduces
the functionality of QCMPS with a comparison to existing quantum simulators. In chapter 3,
we benchmark QCMPS with a high-level simulation of Shor’s algorithm following the method of
[24] with additional optimisations to better suit the computation to MPSs. Using approximately
14 TB of memory on the Magnus supercomputer [25], we were able to simulate an instance of
Shor’s algorithm on 60 qubits, being potentially the largest high-level but non-trivial quantum
circuit ever simulated. Finally, we investigate the one-dimensional Google supremacy problem
with and without errors to determine if any of our MPS techniques might serve to refine the
estimate for its supremacy point.

7

Chapter 2

QCMPS Library Showcase

The matrix product state formalism is a method for representing quantum states alternative
to the more familiar state vector formalism. As we discuss in this chapter, the time and
space requirements for storing and manipulating these matrix product states (MPSs) scale
with the amount of entanglement within the quantum state, making it a viable alternative for
use in classical simulations of certain quantum systems [21] when compared to the state vector
formalism with its more rigid requirements.

Since the use of MPSs for classical simulation of quantum circuits forms the basis of this
thesis, we will provide an introduction to their mechanics and an overview of the operations
that can be performed with them. To begin, we introduce the use of tensor networks [20] for
its convenient pictorial representations of the methods performed. The mechanics of MPSs can
then be built on this foundation.

To implement these operations, we have developed the numerical library QCMPS for sim-
ulating quantum circuits. It is specifically tailored for this purpose, as opposed to simulating
other systems relevant to condensed matter physics [22, 23], so we document our choice of
conventions and our design decisions here.

2.1 Introduction to tensor networks

For this thesis, we define a tensor T of rank n to be a simple n-dimensional array of scalars,
similar to [26]. We may index individual elements of these tensors through indices where, for
us, raised or lowered indices are not relevant. Each index has some associated dimension that
we denote with the upper case of the index (e.g. Mab is an element of a rank-2 tensor, or
matrix, of size A×B). Following [20], we can represent such rank-n tensors diagrammatically
as shapes with n emerging lines, where each line is associated with a single dimension of the
tensor. Examples of low-rank tensors are shown in Fig. 2.1. Through these diagrams, we can
examine some basic tensor operations.

S

(a) Scalar S

V
a

(b) Vector V of elements Va

M
a b

(c) Matrix M of elements Mab

Figure 2.1: Pictorial representations of low-rank tensors

8

2.1. INTRODUCTION TO TENSOR NETWORKS

2.1.1 Reshape and transpose

Reshaping a tensor involves redistributing its elements over a different set of indices. For
example, vectorising a matrix M into vector V yields Vc = Mab as shown in Fig. 2.2. Note
that a tensor’s size is equal to the product of its indices’ dimensions, and the reshape operation
must conserve this quantity. This also allows us to insert and remove indices of unit dimension
as we please: [26] refers to these as expanding and squeezing respectively. As such, the reshape
operation may alter the number of emerging lines from a tensor’s diagrammatic representation,
as well as the corresponding dimensions. It is also worth mentioning that, computationally, a
tensor must be vectorised in order to be stored linearly in memory. The two storage schemes,
row-major and column-major storage, produce different results when a tensor is reshaped, so
it is important to be aware of a numerical library’s convention.

M
a

b

(a) Matrix before reshape

→
V

c

(b) Vector after reshape

Figure 2.2: Matrix to vector reshape example

A generalised tensor transpose is a reordering of a tensor’s indices. For the familiar matrix
transpose, we have M>

ba = Mab, and for a rank-4 tensor, we might have T ′dbac = Tabcd. Thus, a
transpose operation does not alter a tensor’s diagrammatic representation, but is a useful com-
plement to the reshape operation. Composing reshapes and transposes allows us to manipulate
the layout of a tensor.

2.1.2 Contraction and tensor product

An Einstein summation notation expression for a tensor contraction can be represented by
joining lines corresponding to summation indices, creating a tensor network diagram. We allow
an Einstein summation expression to repeat an index more than twice (since raised and lowered
indices are not relevant to us), so a tensor network diagram of such an expression would join
more than two index lines together. Only indices of equal dimension may be contracted. Fig.
2.3 shows a simple example of a tensor network.

M
a b

V

(a) Tensor network of MabVb

→
V'

a

(b) Resulting contraction

Figure 2.3: Tensor network example of applying the linear transform V ′a = MabVb

A tensor product T of two tensors A and B has the combined indices of A and B such
that each element of T is the scalar product of the element in A and the element in B with
the corresponding indices. For example, the outer product of two vectors yields Tab = AaBb.
Pictorially, this can be thought of as reshaping both A and B to add a new index of unit
dimension and contracting over this new index. An addition example is provided in Fig. 2.4.

9

2.2. QUANTUM CIRCUITS AS TENSOR NETWORKS

Mb

c

N

y

xd
a

Figure 2.4: Tensor network example for the outer product MabcNxy. Note that M and N are
expanded to produce contraction index d of unit dimension.

2.1.3 Decomposition

Contracting tensors over specific indices serves as a natural way to evaluate tensor network
diagrams. However, for the purposes of this thesis, it is also important that we have some
method of decomposing a tensor into a contraction of multiple simpler tensors in a tensor
network diagram. First, we consider the decomposition of a rank-2 tensor, matrix M . There
are several linear algebra routines for decomposing a matrix:

• The trivial decomposition

Mab =

{
Macδcb, A ≥ B

δacMcb, A < B
, (2.1)

where δ is the Kronecker delta.

• The QR decomposition Mab = QacRcb, where Q is a unitary matrix and R is an upper
triangular matrix.

• The singular value decomposition (SVD)

Mab = UacScVcb, (2.2)

where C ≤ min(A,B), U and V are unitary matrices and S has real, non-negative
elements. In tensor network diagrams, the vector S of singular values is often promoted
to a diagonal, square matrix such that Mab = UacScdVdb.

The SVD (and QR decomposition when used with column pivoting) is rank-revealing, so we can
use these decompositions to minimise the number of elements stored in the resulting tensors.
For the SVD, this means only storing elements corresponding to non-zero entries of S in Eq.
(2.2).

Decomposing a general tensor may be done by transposing and reshaping it into a matrix so
that a matrix decomposition such as the SVD can be used. Following the matrix decomposition,
the resulting matrices can be reshaped and transposed to restore the indices of the original
tensor. This process is demonstrated in Fig. 2.5, and is henceforth used when applying the
SVD to a general tensor. Additional decompositions can be performed on these resulting tensors
to further separate indices of the original tensor.

2.2 Quantum circuits as tensor networks

At its most basic level, classical computation relies on performing operations on bits, digital
units of information whose state can be represented by either 0 or 1. In quantum computation,
the equivalent unit of information is the quantum bit, or qubit, a two-level quantum system
represented by a unit vector in C2 with the standard complex inner product and norm. As such,
we can represent a qubit in our tensor network diagrams as a vector with index of dimension
2. In general, however, a d-level quantum system may underpin a qudit, which can then

10

2.2. QUANTUM CIRCUITS AS TENSOR NETWORKS

Qb

c

a x

y

(a) Example tensor Q, for splitting
{a, b, c} from {x, y}

→
Q'

m n

(b) Reshape of Q to Q′

→
U'

m
V'

nS'

(c) SVD of Q′ per Eq. (2.2)

→

SUb

c

a

V

x

y

(d) Restoration of original indices and
promotion of vector S′ to square, diag-
onal matrix S

U

U*

bc a = I

V

V*

xI = y

(e) Unitarity conditions on U and V . I
here represents the appropriately sized
identity matrix and the asterisk refers to
an element-wise complex conjugation.

Figure 2.5: Decomposition of tensor Q to group indices {a, b, c} and {x, y} amongst each other

be represented by a unit vector in Cd or in a tensor network by a vector with an index of
dimension d. These state vectors for a single qubit or qudit are conventionally written in terms
of a complete, orthonormal basis. If the two basis elements of a qubit, for example, correspond
to the classical states 0 and 1, then we have what we call the computational basis, in which

|ψ〉 = α |0〉+ β |1〉 ,
〈ψ|ψ〉 = |α|2 〈0|0〉+ |β|2 〈1|1〉

= |α|2 + |β|2

= 1.

for some arbitrary state |ψ〉 in our familiar bra-ket notation. Due to this normalisation, mea-
surement of this qubit in the computational basis carries the interpretation that |ψ〉 collapses
to (α/|α|) |0〉 with probability |α|2, or to (β/|β|) |1〉 with probability |β|2. This readily extends
to general qudits.

Analogous to logic gates for classical circuits, quantum circuits make use of quantum gates
to manipulate state. Quantum gates acting on a single d-level qudit are unitary transforms,
which can be written as d × d unitary matrices in the same orthonormal basis of the state
vector it should act on. In a tensor network, these quantum gates are represented as a simple
rank-2 tensor which contracts with the index of a qudit’s state vector. One common example

11

2.2. QUANTUM CIRCUITS AS TENSOR NETWORKS

of a quantum gate is the Hadamard gate for qubits, which performs the operation

H |0〉 =
1√
2

(|0〉+ |1〉),

H |1〉 =
1√
2

(|0〉 − |1〉).

As such, the Hadamard gate has a matrix representation

H =
1√
2

[
1 1
1 −1

]
(2.3)

in the computational basis.
In a system of multiple qudits, the set of basis vectors of the overall state vector is the set

of all possible tensor products of the constituent subsystems’ basis vectors. Therefore, a tensor
network diagram of, say, n qubits has n index lines, each of dimension 2. Single qudit gates can
be applied as tensor contractions to a specific line corresponding to the qudit to operate on.
Furthermore, we may also operate multi-qudit gates that contract to multiple qudit indices.
An example circuit represented as a tensor network diagram in this manner is shown in Fig.
2.6b.

Since a state vector’s tensor diagram can be reshaped to combine qudit indices, an n qubit
tensor with n lines of dimension 2 storing 2n elements is equivalent to a single 2n level qudit,
or any other combination of di level qudits resulting in a total dimensionality of 2n. Similarly,
multiple qudit gates can be reshaped to an equivalent single qudit unitary operation.

Quantum circuits are used to display the layout of quantum gates. Typically, they are drawn
with horizontal lines representing qubits initialised to some indicated state (usually |0〉), so the
initial state vector will be the tensor product of these subsystems. Circuits are then composed
by placing gates on single lines for single qubit gates, or on multiple lines for multiple qubit
gates. Thus, a quantum circuit is simply a tensor network diagram: we can interpret all gate
operations as tensor contractions on a multiple-qubit state vector. An example circuit with its
equivalent tensor network is provided in Fig. 2.6.

H • T •

H • • T •

H • • T

H • T

(a) Example circuit acting on state |ψ〉
of four qubits

|ψ〉

H
CZ

T
CZ

H
CZ

T

H
CZ

T

H T

(b) The corresponding tensor network. Note the
multiple index lines originating from the state vec-
tor for |ψ〉, each representing a distinct qubit sub-
system.

Figure 2.6: An example quantum circuit and its corresponding tensor network. For now, the
explicit matrix representations of the as-yet unintroduced gates are not important.

As stated earlier, measurement of a single qudit in a particular basis collapses the state
into a single basis state, with some probability related to the square of the absolute value of
the state vector’s corresponding coefficient. At this point, we introduce the pure state density
matrix

ρ = |ψ〉〈ψ| .

12

2.3. MATRIX PRODUCT STATES

In a tensor network, we construct this density matrix by taking the tensor product of a state
vector with its complex conjugate. The diagonal elements of this density matrix now indicate
the probability of measuring a particular state. The density matrix for a system of multiple
qudits, by extension, is the tensor product of a multiple-qudit state vector with its complex
conjugate, shown in Fig. 2.7a.

In a system of multiple qudits, measurement of a single qudit also requires the density matrix
of the entire state vector. However, in order to arrive at a reduced density matrix for the qudit
system to be measured, we now ‘trace over’ all other qudit subsystems by contracting pairs
of index lines corresponding to each other qudit (so that the only free indices of the reduced
density matrix correspond to the qudit of interest) as per Fig. 2.7b. The diagonal elements of
this reduced density matrix correspond to the probabilities pm of measuring value m from the
qudit. When a particular value m is measured for the given qudit, all elements in the original
state vector corresponding to m for that qudit are rescaled by 1/

√
pm, and all other elements

are set to zero. In this way, we can also interpret measurements of single qubits in quantum
circuit diagrams.

? ? *

?
=

(a) Tensor network of the pure density
matrix ρ = |ψ〉〈ψ|, where the contracted
index has unit dimension

?

(b) The reduced density matrix of the
second qudit system.

Figure 2.7: Tensor networks for the density matrix and reduced density matrix

2.3 Matrix Product States

In contrast to a state vector simulation of a quantum circuit, which performs gate operations
as tensor contractions on the entire state vector (of size 2n for an n qubit system), the matrix
product state (MPS) formalism was developed for its adaptive computational resource require-
ments, and also allows simulating gates as local operations. To accomplish this, the state vector
tensor is sequentially decomposed so that each qudit line is joined to a distinct tensor which are
laid out linearly, producing a tensor network like Fig. 2.8b. Therefore, each tensor in an MPS
chain has three index lines: one representing the qudit’s index in the original state vector, and
index lines to the left and right contracting to adjacent qudits. Applying single qudit gates now
only requires contraction with the relevant qudit tensors rather than the entire state vector. If
the SVD, Eq. (2.2), is used as the matrix decomposition, we also have the vectors of singular
values between each qudit tensor. We refer to these vectors as the bond tensors, and although
they can be contracted into an adjacent qudit tensor, we choose to keep them separate. Why
we choose to do so will be explained shortly.

In the following section, we demonstrate the mechanics of the MPS formalism as operations
performed by our numerical library QCMPS.

2.4 QCMPS

We have developed a C++ library titled QCMPS for applying the MPS formalism specifically
to simulating quantum circuits. Due to the limited computational resources of a single classical
computer, we require the use of the Message Passing Interface (MPI) [27] to make use of

13

2.4. QCMPS

a b c d

(a) A state vector of four qudits

a b c d

(b) A matrix product state representa-
tion for this system. The intermediate
circles represent the vectors of singular
values, or bond tensors, when the SVD
is used.

Figure 2.8: Tensor networks for a quantum state represented in the state vector and matrix
product state descriptions

distributed memory systems to increase the amount of memory and parallelism available to
us. Typically, a library for dense tensor contraction might be built upon [28] or [29]. However,
these libraries do not include support for any matrix decompositions, so they are unsuitable
for a complete, distributed memory MPS library. Such routines are provided in ScaLAPACK
[30], but reference implementations of ScaLAPACK only allow for indexing arrays through
32 bit integers, ultimately limiting the size of the tensors we can work with. Furthermore, SVD
in ScaLAPACK is restricted to a slower algorithm based on QR iteration [31]. With these
limitations in mind, QCMPS is built on Elemental [32], chosen for its faster divide and conquer
SVD algorithm [33] and 64 bit indexing when used with a compatible Basic Linear Algebra
Subprograms (BLAS) and Linear Algebra Package (LAPACK) [34] implementation, such as
OpenBLAS [35] or the Intel Math Kernel Library.

2.4.1 MPS canonical form

In section 2.2, we defined a method of making measurements of individual subsystems in the
state vector formalism. This involved calculating the reduced density matrix of the quantum
subsystem to be measured, say qudit q, through contractions on a tensor network. If the state
vector is decomposed into an MPS, similar contractions are required: we still trace over all
qudits other than q, producing a tensor network such as Fig. 2.9b. However, if each ‘loop’
left and right of q’s tensors is equal to the identity matrix, the reduced density matrix can
be calculated locally. These loops are defined in Fig. 2.9a. We define a qudit to be in ‘left
canonical’ (‘right canonical’) form if it produces a left (right) loop resulting in the identity
matrix. The reduced density matrix of q can be locally calculated if all qudits left (right) of
q are in left (right) canonical form with a tensor network given by Fig. 2.9c. We define an
MPS to be in canonical form if every qudit is in both left and right canonical forms. In this
case, the density matrix of every qudit may be calculated locally, and each bond tensor γ[m]

at bipartition m contains the Schmidt coefficients for m. Therefore, the bond tensors may be
used to determine the entropy of entanglement

H(m) = −
∑
αm

∣∣γ[m]
αm

∣∣2 log2

∣∣γ[m]
αm

∣∣2 (2.4)

in bits, across bipartition m. Notably, if the Schmidt rank of a bond tensor at bipartition m
is one (i.e. the bond tensor has unit dimension), the state is separable across m. Since access
to the bond tensors is required for the MPS’ canonical form and also useful for these Schmidt
coefficients, use of the SVD is essential, so we forgo the use of other decompositions such as
the QR decomposition in our library.

Even though we refer to this as a canonical form, an MPS in this form is not unique since

14

2.4. QCMPS

?[i]?[i-1]

?[i]*?[i-1]

?[i] ?[i]

?[i]* ?[i]

= I I =

(a) Left and right canonicalisation conditions for a qudit i
whose MPS tensor is labelled Γ[i]. Matrices I here are the
appropriately sized identities.

?[1] ?[2]?[1] ?[3] ?[4]?[3]?[2]

?[1]* ?[2]*?[1] ?[3]* ?[4]*?[3]?[2]

(b) The reduced density matrix obtained
by combining Figs. 2.7a, 2.7b and 2.8b.

?[2]?[1] ?[2]

?[2]*?[1] ?[2]

(c) The reduced density matrix from Fig.
2.9b if qudits i < 2 (i > 2) are in left
(right) canonical form, per Fig. 2.9a.

Figure 2.9: The MPS canonicalisation conditions and their implications for the reduced density
matrix. If a qudit is at the ends of the MPS, any missing bond tensors may be omitted from
Figs. 2.9a and 2.9c.

the SVD itself is not unique. One such example is the trivially separable two qudit state

|0〉 ⊗ |0〉 =
(
eiθ |0〉

)
⊗
(
e−iθ |0〉

)
,

which has different coefficients in the equivalent canonical expressions. This point is noted as
an error in [36].

2.4.2 Contraction and decomposition

The contraction operation allows us to combine two adjacent qudits with dimensions d1 and d2
into a single effective qudit of dimension d1d2. This is akin to a simple reshape of a state vector’s
tensor. To perform this operation, both qudit tensors are reshaped into matrices where one
matrix index corresponds to the resulting free indices and the other index corresponds to the
contraction indices. This initial reshape allows us to make use of optimised BLAS routines for
matrix multiplication instead of slower nested loops, a choice determined on behalf of our testing
and in agreement with recommendations made in [37]. The intermediate bond tensor is then
contracted into the smaller of the left or right qudit’s reshaped tensor to save computation time.
Matrix multiplication is then performed on the two reshaped qudit tensors, and the resulting
matrix is reshaped into a tensor for a qudit of dimension d1d2. Importantly, if both qudits are
in left (right) canonical form, the contracted qudit is also in left (right) canonical form. Hence,
contraction maintains an MPS’ canonicalisation.

Decomposition is the reverse operation of contraction, and aims to decompose a qudit of
dimension d1d2 into a left qudit of dimension d1 and a right qudit of dimension d2. To perform
a decomposition, any existing adjacent bond tensors are first contracted into the qudit tensor.
The qudit tensor is then reshaped into a matrix where one index combines the left bond index
and the left subsystem’s index of dimension d1, and the other combines the right bond index

15

2.4. QCMPS

and right subsystem’s index of dimension d2. We can then perform the SVD, Eq. (2.2), to
this matrix. Since the SVD is rank revealing, we can take an opportunity here to only keep
tensor elements corresponding to non-zero singular values. Notably, since the bond tensors
correspond to the Schmidt coefficients across the corresponding bipartition, storing only non-
zero singular values allows the space requirements of a canonical MPS to scale with the amount
of entanglement across each bipartition. Numerically, we only consider singular values of m×n
matrix A above

ε‖A‖2 max(m,n) (2.5)

to be non-zero, where ε is the machine epsilon of the real datatype of A (2−53 for double
precision) and ‖A‖2 is the spectral norm of A, equal to A’s largest singular value. This bound
results from perturbations introduced in the finite precision reduction to bidiagonal form step
of the SVD algorithm [31]. We then reshape the resulting matrices to restore the outer bond
indices and qudit subsystem indices. Finally, since exterior bond tensors were contracted in
prior to the SVD, we must perform a contraction with the element-wise reciprocal of these
bond tensors to remove them. There is no issue with a division by zero at this step, since only
non-zero singular values are stored. The whole decomposition process is detailed in Fig. 2.10,
and contraction is naturally the reverse operation without using the external bond tensors.

?[i]?[i-1] ?[i+1]

(a) The MPS tensor of a qudit i to de-
compose

→
(b) The external bond tensors are con-
tracted in and the qudit’s index is ap-
propriately reshaped.

→

(c) The SVD is applied.

→
(d) The external bonds are then divided
out.

Figure 2.10: Decomposition of a qudit i’s MPS tensor. If an external bond tensor is not present
on account of qudit i being at the end of the MPS, it may be omitted in this process. Qudit
contraction is the reverse process minus dealing with any external bonds.

Due to unitarity of the resulting matrices of an SVD, our choice to contract the adjacent
bond tensors before the SVD and remove them afterwards puts the resulting left qudit in
left canonical form and the resulting right qudit in right canonical form (Cf. Figs. 2.5e and
2.9a). Furthermore, if the original qudit was in left (right) canonical form, both resulting
qudits must now be in left (right) canonical form, since the resulting left (right) qudit is in left
(right) canonical form due to the SVD. Therefore, decomposition in this way also maintains
canonicalisation of an MPS.

Contractions of more than two adjacent qudits or decompositions into more than two qudits
can be achieved by successive two qudit contractions and decompositions respectively.

2.4.3 Recanonicalisation and renormalisation

A given MPS decomposition of a state vector may not be in canonical form, so we should have
some operation to canonicalise such an MPS. One method is to contract together all qudits of

16

2.4. QCMPS

the MPS, effectively producing a state vector tensor, and then to sequentially decompose this
state vector back into individual qudits. However, by operating on a full state vector in this
intermediate step, we lose any space advantage afforded to us by an MPS representation with
a rank revealing decomposition.

A more promising method of recanonicalising a general MPS that mitigates this memory
cost is to perform pairwise qudit contractions and decompositions from one end of the MPS
to the other end and back. We refer to a series of pairwise contractions and decompositions
as a sweep, so recanonicalisation can be achieved via a sweep from the left end to the right
end and back or vice-versa. Since a decomposition puts the left (right) qudit in left (right)
canonical form, a right (left) sweep from the left (right) end puts every qubit except potentially
the rightmost (leftmost) qudit in left (right) canonical form. However, this rightmost (leftmost)
qudit is guaranteed to be in left (right) canonical form if the entire state is normalised correctly
to 〈ψ|ψ〉 = 1. Since we only work on pairs of qudits at a time, we do not incur as great a
memory cost as contracting into an entire state vector.

If a state is not normalised correctly or becomes unnormalised (possibly due to a build up
of numeric imprecision), we can still perform a complete left and right sweep to produce an
MPS in an unnormalised canonical form. In this form, a bond tensor λ[m] at bipartition m still
contains the Schmidt coefficients of m, but their squares no longer sum to one:∑

αm

∣∣γ[m]
αm

∣∣2 = 〈ψ|ψ〉

6= 1.

Therefore, we should first rescale the bond tensor for each bipartition m via

γ[m]
αm
← γ

[m]
αm√
〈ψ|ψ〉

.

To produce the correct overall normalisation, qudit tensor Γ[q] for each interior qudit q (i.e. q
is not at an end of the MPS chain) is updated via

Γ[q]iq
αqαq+1

← Γ[q]iq
αqαq+1

√
〈ψ|ψ〉,

where iq is the qudit index, αq is the left bond index and αq+1 is the right bond index. Since
there is exactly one more bond than there is interior qudit, the overall affect of these rescalings
is to take

|ψ〉 ← |ψ〉√
〈ψ|ψ〉

,

thus normalising and canonicalising the MPS correctly. Furthermore, these rescalings do not
require any MPI communication (apart from initially determining 〈ψ|ψ〉 from a bond in an
unnormalised canonical MPS) and are easily vectorised, so this extra normalisation step has
minimal time overhead.

2.4.4 Truncation

We have established that the use of the rank revealing SVD allows a space advantage for a
canonical MPS representation of a quantum state with low Schmidt rank (i.e. low entanglement)
across each bipartition when compared to the full state vector. If we consider some bond m in
a canonical MPS and contract all qudits left of m into subsystem A and all qudits right of m

17

2.4. QCMPS

into subsystem B, we arrive at the Schmidt decomposition

|ψ〉 =

χ∑
αm=1

γ[m]
αm

∣∣Γ[A]
αm

〉
⊗
∣∣Γ[B]

αm

〉
, (2.6)

where χ is the numerical Schmidt rank across m, remembering that we only chose to consider
tensor elements corresponding to non-zero singular values according to the threshold defined
in Eq. (2.5). Numerical implementations of the SVD produce the (non-negative, real) singular

values in descending order, so we let γ
[m]
αm decrease with αm. Therefore, the Schmidt decomposi-

tion in Eq. (2.6) with decreasing singular values γ
[m]
αm , gives rise to a natural lossy compression

scheme to approximate the state |ψ〉 by extending the sum to some compressed Schmidt rank
ξ < χ. In the context of an MPS, this process of reducing a bond’s dimension is referred to as
a truncation. It produces an MPS with smaller memory requirements at the cost of fidelity to
the original state. We also note that truncation in this manner requires the use of the SVD to
provide access to the Schmidt coefficients through the singular values.

Directly following the truncation of a bond between left qudit q1 and right qudit q2, q1 is no
longer in right canonical form and q2 is no longer in left canonical form. The whole MPS can
be returned to a canonical form by performing a left sweep from q1 and a right sweep from q2.
However, this canonical form is unnormalised, since truncation of the bond between q1 and q2
removes some Schmidt coefficients. We can apply a renormalisation at this point to produce a
canonical MPS with correct normalisation.

It is important to note that truncation to a canonical MPS is not a purely local operation,
i.e. one involving the two qudits adjacent to the truncated bond. Truncation of a bond of
Schmidt rank χ to a truncated rank ξ can be thought of as receiving

|ψtrunc〉 =

ξ<χ∑
αm=1

γ[m]
αm

∣∣Γ[A]
αm

〉
⊗
∣∣Γ[B]

αm

〉
as the result of some measurement (before renormalisation). Since a measurement should in
general serve to collapse entanglement throughout a state, sweeps outward from the truncated
bond are required to propagate this collapse. Numerical tests show that renormalising the
truncated bond alone, as erroneously suggested in [36], is not enough to renormalise, let alone
recanonicalise an MPS.

Canonicalised truncation in this method is a per-bond operation. If entanglement is intro-
duced into multiple bonds simultaneously (perhaps through the application of a gate operation
on multiple qudits as per subsection 2.4.6) through an increase in the Schmidt ranks, the user
must choose some ordering of these bonds to perform canonicalised truncations on. We also
provide the option of performing an uncanonicalised truncation, where bonds can simply be
truncated and the recanonicalisation sweeps and renormalisation operation can be applied just
prior to some operation requiring a canonical MPS.

2.4.5 Measurement and reset

Measurement is the method by which we extract any results from a quantum algorithm run-
ning on a quantum computer. In section 2.2, we required the reduced density matrix of a qudit
subsystem in order to measure it. Furthermore, in subsection 2.4.1, we showed how canon-
icalisation allows us to calculate a qudit’s reduced density matrix locally. Combining these
points, the first step of performing a measurement of qudit q is to ensure that every qudit left
(right) of q is in left (right) canonical form. This is automatically the case if the MPS is in
canonical form, but can be achieved by sweeping inward from the ends at least up to q. We

18

2.4. QCMPS

can then calculate the diagonal elements pm of the reduced density matrix of q locally. Since
the pm correspond to probabilities of measuring value m from qudit q, we can sample from this
discrete distribution to simulate a measurement result of some value m.

To put the MPS into a state where m was measured from qudit q, we temporarily shrink
q to a one dimensional qudit subsystem corresponding to the measured value m with correct
normalisation. That is, if m is the result of our measurement, we project

Γ[q]
αqαq+1

← Γ
[q]m
αqαq+1√
pm

. (2.7)

Since qudits left (right) of q were already in left (right) canonical form prior to this projection,
we only need to perform sweeps outward from q in both directions to canonicalise the MPS (if
we wish to canonicalise it). Since measurement collapses entanglement throughout the state,
these outward sweeps serve to propagate this collapse of entanglement, in a similar fashion to
the outward sweeps of truncation.

We chose to shrink q to a qudit of dimension one prior to the sweeps to avoid contraction
and decomposition operations using a tensor that would otherwise have zeros for each element
not corresponding to m. This method results in exceptional time and space savings, especially
if the dimensionality of q was very large (i.e. if q consists of many qubits). However, since a
one level qudit subsystem is not computationally useful, we must expand q’s tensor back to full
dimensionality if q is to be used in further operations. That is, we update q’s tensor so that

Γ[q]iq
αqαq+1

←

{
Γ
[q]
αqαq+1 , iq = m

0, iq 6= m
. (2.8)

Otherwise, if q is not needed for further operations, we can contract the unexpanded, one
dimensional qudit q into an adjacent qudit, effectively removing it since the measurement
makes q separable from the rest of the system. We choose to contract into the adjacent qudit
with the smaller tensor to minimise computation time.

If we wish to reset a qudit q to a certain value s, we perform an unexpanded qudit measure-
ment of q with or without the subsequent canonicalisation, producing measurement result m.
We then perform some classical switching on q that maps |m〉 → |s〉. This can be accomplished
via an alternate expansion to Eq. (2.8) where the unexpanded tensor for m is placed into s:

Γ[q]iq
αqαq+1

←

{
Γ
[q]
αqαq+1 , iq = s

0, iq 6= s
,

following from Eq. (2.7).

2.4.6 Gate operations

In order to simulate quantum circuits, we must be able to apply quantum gates to our MPS.
As mentioned in section 2.2, quantum gates are unitary operations that contract onto a state
vector when applied. For single qudit gates, the generalisation to an MPS is simple: the gate’s
unitary matrix in the computational basis is simply contracted to the specified qudit’s tensor,
whilst maintaining any left or right canonicalisation of the qudit and hence any canonicalisation
of the entire MPS. The schematic for this process is given by Fig. 2.11a.

Gates on multiple qudits are easily applied to a state vector through tensor contraction and
appropriate index bookkeeping. Since an MPS lays the qudit tensors out in a linear chain, it is
most straightforward to apply a multiple qudit gate to consecutive qudits on an MPS. To apply

19

2.4. QCMPS

a gate on n consecutive qudits, there are two options. The first is to contract the n qudits into
a single qudit, apply the gate as a single qudit unitary operation and then decompose back
into n qudits. This method maintains canonicalisation since the contraction, single qudit gate
operation and decomposition all do.

The second method involves decomposing the gate itself into a matrix product operator
(MPO), which can then be contracted directly onto the n qudits in the MPS (Fig. 2.11b).
This contraction alone does not maintain canonicalisation, but if all n qudits were initially
in left (right) canonical form, then a sweep right (left) over just these n qudits will return
them all to left (right) canonical form. A single such sweep can be performed as the MPO
is contracted onto each subsequent qudit of the MPS, in order to leverage the rank revealing
SVD and minimise space usage during the operation. When the total dimensionality d of the
n qudits is very large, the latter method may have lower space requirements since only pairs
of qudits are contracted at once. However, in this case, finding an MPO representation of the
d×d unitary matrix through tensor decomposition may prove computationally challenging. We
propose an efficient method to apply common linear nearest neighbour (LNN) gates in section
2.5. Otherwise if d is reasonable, as is the case for two qubit (d = 4) gates such as the Swap
gate, the former method is faster due to needing to perform fewer tensor contractions.

U

(a) Application of gate U to the second
site of an MPS. If U acts on multiple, ad-
jacent subsystems, they should first be
contracted into a single qudit for this
method.

(b) Otherwise, U itself might be decom-
posed into an MPO and applied to each
relevant site.

Figure 2.11: Methods for applying gate operations to MPSs

When applying non-LNN gates (i.e. multiple qudit gates on non-consecutive qudits) to an
MPS, there are also two strategies. If we wish to apply an n qudit gate U to n qudits in our
MPS that lie across a range including an additional k qudits, we can regard an expanded U as
an n + k qudit gate that applies U to the n core qudits and the identity operator I to the k
extra qudits. Given an MPO decomposition of U , tensors for the separable identity operators
can be inserted into this MPO in positions corresponding to the k extra qudits in the MPS.
This expanded MPO for U can then be applied as an LNN gate as mentioned above.

The second strategy for applying a non-LNN gate U is to use Swap operations on two
adjacent qudits

Swap : |a〉 ⊗ |b〉 → |b〉 ⊗ |a〉 , (2.9)

where |a〉 is a basis ket of one qudit’s Hilbert space and |b〉 is a basis ket of the other’s. Through
enough of these Swap gates, which can be applied in either method as two-qudit LNN gates,
qudits in the linear chain of the MPS can be rearranged so that U can be applied as an LNN
gate. Optimising Swap placement is crucial for performance; at least one such algorithm [38]
aims to map general quantum circuits to LNN architectures with as few Swap gates as possible.
Optimising specifically for MPS simulation performance may be even more difficult due to the
non-linear time and space complexities of qudit contraction and decomposition and not being
able to easily query a bond’s resulting dimension prior to operating a Swap.

20

2.5. GENERAL CONTROLLED GATE OPERATIONS FOR MPS

2.5 General controlled gate operations for MPS

One of the most common multiple qudit gate structures is the controlled gate operation. Con-
sider first a single qubit gate such as the X gate

|0〉 → |1〉 ,
|1〉 → |0〉 ,

the quantum equivalent of the classical Not gate in the computational basis. A controlled X
gate, otherwise known as the CNot gate, applies the X gate to a qubit based on the state of
another:

|0〉 ⊗ |0〉 → |0〉 ⊗ |0〉 ,
|0〉 ⊗ |1〉 → |0〉 ⊗ |1〉 ,
|1〉 ⊗ |0〉 → |1〉 ⊗ |1〉 ,
|1〉 ⊗ |1〉 → |1〉 ⊗ |0〉 .

Here, the state of the first qubit is used to conditionally apply the X gate on the second qubit:
if the first qubit is in the |1〉 state, then the X gate is applied to the second qubit; otherwise
the identity operation is applied to the second qubit. The state of the control qubit is left
unchanged. This is a form of binary control, where each state for a control qudit is individually
either ‘on’ or ‘off’, specifying whether or not to apply the attached gate. For example, a five-
level control qudit might apply the main gate operation in states |0〉, |2〉 or |4〉, whilst applying
the identity in states |1〉 or |3〉. When there are multiple binary control qudits, the main gate
operation is only applied when all control qudits are in an ‘on’ state. If there are multiple
simultaneously controlled gate operations, they are treated as a single operation: that is, if
the control qudits take an ‘on’ state, then all attached gate operations are applied to their
respective qudits. Otherwise, if any control qudit takes an ‘off’ state, none of the attached
gates are applied.

For an MPS, we are interested in being able to apply LNN restricted versions of these general
binarily controlled gate operations. Specifically, we require that not only the entire controlled
gate operation be LNN, but also that the main gates (i.e. the gates binarily controlled by the
control qudits) be LNN. Fig. 2.12 contains an example of such a gate. If the main gates are
each LNN but the control qudits cause the entire gate structure not to be LNN, identity gate
operations I can be inserted at each qudit gap. In this way, we may simulate, for example,
a CNot gate on distant qubits as a controlled I ⊗ . . . ⊗ I ⊗ X gate. However, this does not
provide a simple method of applying a long range Swap (Eq. (2.9)) to two qudits.

To review the options detailed in subsection 2.4.6 of applying a gate to an MPS, we could
either contract the required qudits into a single qudit that we then apply the gate to, or
decompose a matrix representation of the gate into an MPO and contract that onto the MPS.
Both methods have space limitations when the total dimensionality of the required qudits is
very large: the former in contracting the qudits together and the latter in decomposing a large
matrix representing the gate operation. However, it is possible to apply an LNN generalised
binarily controlled gate (LNNGBCG) whilst avoiding complete qudit contraction or operator
decomposition.

We propose the following rules for obtaining a resulting MPS after such an LNNGBCG is
applied. From these, an MPO representation of the gate can easily be obtained. We require
that any main gates are applied as single qudit operations: for example, a two qubit Swap
requires the two adjacent qubits be contracted. Moreover, in the interest of space and time
usage, the following traits are desirable:

21

2.5. GENERAL CONTROLLED GATE OPERATIONS FOR MPS

•

H

X

×

×

•
Figure 2.12: An example LNNGBCG on seven qubits. The core gates, H, X and Swap, are
each LNN, and the entire gate is also LNN. Black (white) dots represent controls on state
|1〉 (|0〉). Our aim is to apply gates like these to MPSs without writing out their full matrix
representations.

• The derived qudit tensors should be block sparse whenever possible, since zeroing a con-
tiguous region of a distributed tensor is fast and requires no MPI communication.

• The non-zero regions of a derived qudit tensor should only include slices from the original
qudit’s tensor or, for qudits on which the main gates operate, the result of the main gates
on these slices. This ensures that only useful computation is done to find the resulting
MPS representation, limiting us through memory and communication speed.

• If an MPO representation of the entire LNN gate is provided, the MPS resulting from
our rules should not have a greater space usage than an MPS resulting from contraction
with the given MPO.

With regard to the third point, we observed that the Schmidt operator rank across some
bipartition of an LNNGBCG MPO, obtained through a rank revealing decomposition such as
the SVD, is at most 3 if there exists at least one main gate and one control on both sides of the
bipartition; otherwise, it is at most 2. For example, the LNNGBCG of Fig. 2.12 has Schmidt
operator rank 2 between the H and the above control, but rank 3 between it and the below
control. This simple classification gives rise to a general operator Schmidt rank structure of
LNNGBCGs. On the left and the right sides of the LNNGBCG, there must be maximal and
contiguous regions of sites that consist entirely of either main gates or controls. Within the left
(right) region, the operator Schmidt rank is 2, since all sites to the left (right) of any bipartition
in this region are either main gates or controls. Optionally, there may also be a contiguous
middle region for the remaining sites. If this region has more than one site, any bipartitions
within it have an operator Schmidt rank of 3. If the left and right partitions consist of sites of
the same classification (i.e. main gate or control), this middle region is required. Otherwise,
every site would be a control, which would result in an invalid gate, or every site would be
a main gate, which would not be an LNNGBCG; rather, it would be applied via individual
single qudit gates. Therefore, to obtain a complete description of the results of applying an
LNNGBCG to an MPS, we must provide a qudit’s resulting tensor for

1. the leftmost LNNGBCG site, where the MPO’s left and right Schmidt ranks are 1× 2 at
this site,

2. other sites in the left region, where the left and right operator Schmidt ranks are 2× 2,

3. any middle region sites, where

(a) a single middle region site has operator Schmidt ranks of 2× 2

22

2.5. GENERAL CONTROLLED GATE OPERATIONS FOR MPS

(b) or if there are multiple middle region sites,

i. the leftmost site of the middle region has ranks 2× 3,

ii. any interior sites of the middle region has ranks 3× 3 and

iii. the middle region’s rightmost site has ranks 3× 2,

4. other sites of the right region, with ranks 2× 2, and finally

5. the rightmost site, where the rank is 2× 1,

for both cases of an LNNGBCG site’s classification.
Conventionally, we write the elements of a single n-dimensional qudit’s state |ψ〉 as a column

vector in the computational basis which may be transformed by some operator U expressed as
a square matrix in the same basis:

U

ψ1

ψ2

. . .
ψn

 =

U1αψα
U2αψα
. . .

Unαψα

. (2.10)

For the tensor Γ[q] of some qudit q in an MPS whose elements are indexed as Γ
[q]iq
βqβq+1

where βq
and βq+1 are the left and right bond indices respectively, the contraction of an operator U onto
q generalises from Eq. (2.10) to a ‘vector of matrices’:

Λ[q]1

Λ[q]2

. . .
Λ[q]n

 ≡ U

Γ[q]1

Γ[q]2

. . .
Γ[q]n

 =

U1αΓ[q]α

U2αΓ[q]α

. . .
UnαΓ[q]α

,
where Λ[q] is the result of applying U to q’s tensor.

Using this notation, if the resulting tensor for q after the full LNNGBCG is applied is Ξ[q],
then the main gate site rules are

1 : Ξ[q]iq =
[
Γ[q]iq Λ[q]iq

]
,

2, 3a, 4 : Ξ[q]iq =

[
Γ[q]iq 0

0 Λ[q]iq

]
,

3(b)i : Ξ[q]iq =

[
Γ[q]iq Γ[q]iq 0
Γ[q]iq 0 Λ[q]iq

]
,

3(b)ii : Ξ[q]iq =

Γ[q]iq 0 0
0 Γ[q]iq 0
0 0 Λ[q]iq

,
3(b)iii : Ξ[q]iq =

Γ[q]iq 0
0 Γ[q]iq

0 Λ[q]iq

,
5 : Ξ[q]iq =

[
Γ[q]iq

Λ[q]iq

]
,

where the respective matrices are concatenated, and 0 is the zero matrix of the appropriate size
here. For the control sites, if u is an ‘off’ value and c is an ‘on’ value of the respective control

23

2.6. DENSITY MATRICES IN MPS

in the LNNGBCG, we have the rules

1 : Ξ[q]u =
[
Γ[q]u 0

]
, 1 : Ξ[q]c =

[
0 Γ[q]c

]
,

2 : Ξ[q]u =

[
Γ[q]u 0
Γ[q]u 0

]
, 2 : Ξ[q]c =

[
Γ[q]c 0

0 Γ[q]c

]
,

3a : Ξ[q]u =

[
Γ[q]u 0

0 0

]
, 3a : Ξ[q]c =

[
0 0
0 Γ[q]c

]
,

3(b)i : Ξ[q]u =

[
Γ[q]u Γ[q]u 0

0 0 0

]
, 3(b)i : Ξ[q]c =

[
Γ[q]c 0 0

0 0 Γ[q]c

]
,

3(b)ii : Ξ[q]u =

Γ[q]u Γ[q]u 0
0 0 0
0 0 0

, 3(b)ii : Ξ[q]c =

Γ[q]c 0 0
0 Γ[q]c 0
0 0 Γ[q]c

,
3(b)iii : Ξ[q]u =

Γ[q]u 0
0 0
0 0

, 3(b)iii : Ξ[q]c =

 0 0
Γ[q]c 0

0 Γ[q]c

,
4 : Ξ[q]u =

[
Γ[q]u Γ[q]u

0 0

]
, 4 : Ξ[q]c =

[
Γ[q]c 0

0 Γ[q]c

]
,

5 : Ξ[q]u =

[
Γ[q]u

0

]
, 5 : Ξ[q]c =

[
0

Γ[q]c

]
.

For bipartitions of operator Schmidt rank bounded by 2 (3), the corresponding bond vectors of
the MPS are tiled twice (thrice).

These rules satisfy the first and second desirable traits from above: they are block sparse
and only rely on values from the original qudit tensor or from the qudit tensor after applying a
main gate. Furthermore, they are consistent with our assertion that the operator Schmidt rank
across any bipartition of an LNNGBCG is bounded above by 2 or 3 depending on whether or
not the bipartition has at least one main gate and one control on both sides. Though we haven’t
proven opimality of this classification, we motivate it by claiming that a rank of 3 results from
controls on each side of a bipartition controlling main gates on the opposite side, whilst a rank
of 2 results from controls on only one side of a bipartition controlling gates on the opposite
side.

Application of an LNNGBCG does not maintain canonicalisation of the MPS. The MPS can
be recanonicalised as mentioned in subsection 2.4.6 for general MPOs, where the contraction
and decomposition operations of a single sweep are performed as each individual qudit and
bond tensor is subsequently transformed.

2.6 Density matrices in MPS

Just as the tensor network principles allow us to decompose a state vector into an MPS, a
general density matrix

ρ =
∑
i

pi |ψi〉〈ψi| (2.11)

is Hermitian with unit trace and may be decomposed into a similar LNN tensor network as
shown in Fig. 2.13. Since ρ is also an operator which can be applied to some arbitrary state

24

2.6. DENSITY MATRICES IN MPS

|ψ〉 as

ρ |ψ〉 =
∑
i

〈ψi|ψ〉 |ψi〉 ,

the tensor network decomposition of a density matrix is, infact, an MPO. However, we will
specifically refer to these as matrix product density operators (MPDOs) for density matrices.
Eq. (2.11) implies a tensor product of state vectors, so if an MPDO is to follow the LNN form

of an MPS, each qudit q of the MPDO holds some tensor Θ[q] with four indices as Θ
[q]iqjq
αqαq+1 ,

where αq and αq+1 are the familiar left and right bond indices akin to those in an MPS and iq
and jq correspond to q’s indices in the overall density matrix. The bond tensors are similarly
vectors resulting from the SVD as our decomposition.

Figure 2.13: Tensor network for an MPDO of four qudits. Cf. Fig. 2.7a.

In subsection 2.4.1, we discussed a canonical form for an MPS which allowed us to obtain
a qudit’s reduced density matrix locally and hence perform single qudit measurements locally.
This canonical form resulted from unitarity of the SVD and normalisation of a state, 〈ψ|ψ〉 = 1,
which can also be seen if we consider the density matrix ρ of the pure state |ψ〉 also contracted
with its dual:

tr(ρρ†) = 〈ψ|ψ〉 〈ψ|ψ〉
= 1.

Though we can still choose to use the SVD, no similar normalisation for a general, potentially
mixed density matrix exists, which is unsurprising given that this quantity is also referred to
as a state’s purity:

tr(ρρ†) = tr(ρ2)

≤ 1

where the equality results from the density matrix being Hermitian. Therefore, a similar
canonical form for our MPDOs cannot be used to locally obtain a qudit’s reduced density
matrix or perform a single qudit measurement. We are required to trace over all other indices
(in a similar fashion to Fig. 2.7b) in order to obtain a qudit’s reduced density matrix and
measure it. However, we may still define a canonical form for MPDOs similar to that of MPSs,
the only difference being that a ‘loop’ (like in Fig. 2.9a) has an extra contracted index line
corresponding to the density matrix’s extra set of indices, and that the rightmost (leftmost)
qudit will have a left (right) loop equal to tr(ρ2) instead of 1 for all other qudits. The operations
to maintain this canonical form, including sweeps, have the benefit of minimising the bond
tensors’ dimensions to their respective operator Schmidt ranks at each bipartition.

A gate operation U on an MPDO now requires a contraction with U and its adjoint:

ρ←
∑
i

piU |ψ〉〈ψ|U † = UρU †,

25

2.6. DENSITY MATRICES IN MPS

as demonstrated in Fig. 2.14. Each of the strategies for applying a gate to an MPS are
applicable here: qudits can be contracted and then gate U applied, or U can be decomposed
into an MPO and applied to multiple qudits. The LNNGBCGs of section 2.5 can also be
adapted for use MPDOs with further bookkeeping.

U

U?

Figure 2.14: Operator U is applied to the second qudit in an MPDO.

Measurement of a single qudit q may be performed by obtaining the probabilities pm of
measuring a value m from the diagonal elements of q’s reduced density matrix. Since an
MPDO’s canonical form does not make this a local operation, we must trace over all other
qudits to obtain these probabilities, from which we sample to choose a measurement result m.
If the qudit’s tensor is Θ[q], it is updated by

Θ[q]iqjq
αqαq+1

←

{
Θ

[q]mm
αqαq+1/pm, iq = jq = m

0, otherwise
,

where optimisations similar to those for an MPS in subsection 2.4.5 can be made by reducing
q to a single dimensional qudit if it is no longer required in the circuit. Sweeps outward from
q are then required to return the MPDO to canonical form and collapse entanglement.

2.6.1 Error model simulations with MPDOs

If we only consider MPDO analogues for the operations we have defined for MPSs, then a pure
state MPDO will remain pure. In this case, it is more space efficient to use an MPS to simulate
pure states. An additional operation, exclusive to MPDOs, is the application of a quantum
noise channel to a qudit. These are single qudit operations that introduce some amount noise
to a pure state, resulting in a mixed state. Simulating these operations allows one to examine
the effects that the noise present in a physical quantum machine might have on the results from
a quantum circuit. One example of a noise channel is the bit-flip of probability p on a single
qubit:

ρ← (1− p)ρ+ pXρX†, (2.12)

which may be interpreted as applying the bit-flip X gate as a noise operation with probability
p. A single qubit’s density matrix ρ is thus updated via

ρ ≡
[
ρ00 ρ01
ρ10 ρ11

]
← (1− p)

[
ρ00 ρ01
ρ10 ρ11

]
+ p

[
ρ11 ρ10
ρ01 ρ00

]
.

In an MPDO where qubit q has tensor Θ[q], the update applies blockwise:

Θ[q] =

[
Θ[q]00 Θ[q]01

Θ[q]10 Θ[q]11

]
← (1− p)

[
Θ[q]00 Θ[q]01

Θ[q]10 Θ[q]11

]
+ p

[
Θ[q]11 Θ[q]10

Θ[q]01 Θ[q]00

]
.

26

2.6. DENSITY MATRICES IN MPS

Applying a noise channel is a discrete operation used to model the effects of introducing a
specific kind of quantum noise to a system. When modelling noise, the choice and placement
of a noise channel in a circuit must be considered. Bit-flip channels, for example, may be
applied to each qubit in a quantum circuit immediately following initialisation or preceding
measurement to model initialisation and measurement errors respectively.

One more example of a noise channel is the depolarising channel, which updates the density
matrix ρ of a general n-dimensional qudit as

ρ← (1− p)ρ+ p tr(ρ)
In
n

(2.13)

where In is the n × n identity matrix. Here, In/n =
∑n−1

i=0
1
n
|i〉〈i| is the density matrix of the

fully mixed or fully depolarised state and tr(ρ) = 1 is a convenient way to relate its elements
to ρ’s. Therefore, the depolarising channel can be interpreted as depolarising a state with
probability p, and a qubit q with tensor Θ[q] in an MPDO is updated via

Θ[q] ← (1− p)Θ[q] + p
1

2

[
Θ[q]00 + Θ[q]11 0

0 Θ[q]00 + Θ[q]11

]
,

which generalises to higher dimensions n by summing over more diagonal blocks Θ[q]iqiq . These
depolarising channels are often placed after the usual gate operations.

Since noise channels can be expected to decohere quantum states, entanglement in our
MPDO should accordingly collapse. Therefore, sweeps outward in both directions from the qu-
dit to which a noise channel is applied are required to propagate this collapse and recanonicalise
an MPDO, in a similar fashion to single qudit measurement.

Several more standard noise channels have also been defined, and can be found in [39].
QCMPS includes functionality for also applying user-pecified noise channels.

2.6.2 Alternate approaches for density matrix simulations

A straightforward approach to reproducing the measurement statistics of a density matrix
simulated with noise channels is to sample from sufficiently many state vectors. For example,
if a bit-flip channel of Eq. (2.12) is applied to qubit q, we could emulate it with a state
vector by applying the X gate to q with probability p and averaging over the measurement
probabilities for a sufficiently large sample of such state vector runs. Since the space usage of
an MPS is significantly lower than its MPDO counterpart, we are effectively trading this space
saving for the additional time required to sufficiently sample noise outcomes. If a significant
amount of noise is introduced, enough entanglement in an MPDO may be collapsed through
canonicalisation, and an MPS may require far too many samples to sufficiently characterise
the error model. In this case, it makes sense to use the MPDO formalism. Furthermore, to
average over the measurement probabilities for a subsystem q of an MPS, the diagonal elements
of q’s reduced density matrix are required. The constituent qudit subsystems of q may need
to be swapped and contracted to form a qudit for q to obtain this reduced density matrix. If
the dimensionality of q is very large, there may be space limitations in even just storing the
measurement probabilities; if q is the entire system, then a full contraction is required. However,
with an MPDO, each qudit subsystem can be measured sequentially without full contraction,
allowing us to sample from the correct measurement probability distribution without incurring
this memory cost.

27

2.7. COMPARISON TO EXISTING QUANTUM SIMULATORS

2.7 Comparison to existing quantum simulators

One of the simplest and most complete quantum simulator packages is the open source Quantum
Toolbox in Python (QuTiP) [18]. Built upon NumPy [26], it also interfaces with the rest of the
SciPy stack to provide rich plotting capabilities through Matplotlib [40]. QCMPS in its current
form does not support any visualisation capabilities, but may in the future. Though QuTiP
relies on the simpler state vector and density matrix formalisms in its calculations as opposed
to our MPS or MPDO methods and is limited to shared memory parallelism, it does internally
store its tensors sparsely, leading to decreased time and space usage in certain situations. The
tensors in QCMPS are stored densely, since Elemental [32] only supports dense, distributed
SVD.

QCMPS was built upon Elemental in order to utilise distributed memory architectures
to overcome the space limitations of shared memory systems. One other distributed memory
quantum simulator is qHiPSTER [19], a similar simulator described by Boixo et al. in [17]. This
is solely a state vector simulator, without any density matrix, MPS or MPDO functionality.
Furthermore, it is limited to single-qubit gates and singly-controlled single-qubit gates such
as the CNot, forcing the user to decompose their circuits. In some sense, this extra step
is analogous to the extra Swap gates required to map a general gate to an MPS or MPDO.
While an MPS may have a space and time advantage over a state vector when a state has low
entanglement, its space complexity is equal (O(2n) for an n qubit system) to a state vector’s
for sufficiently entangled states. In this case, a state vector simulator is advantageous timewise,
since it has no need to apply expensive matrix decompositions such as the SVD that may or may
not scale well with additional CPU cores. Indeed, simple controlled or uncontrolled single qubit
gates as tensor contractions to a state vector are extremely parallelisable, and qHipster makes
use of vectorisation, multithreading and cache locality optimisations to increase its performance.

Most libraries for manipulating MPSs focus not on quantum circuit simulations, but rather
different algorithms such as the density matrix renormalisation group (DMRG) [22] or time-
evolving block decimation (TEBD) [23] for general quantum many-body problems or problems
in quantum chemistry. Though outside the scope of this thesis, their feature requirements are
slightly different to our circuit simulator: we place more emphasis on strict canonicalisation to
allow local measurement of any qudit at any time, requiring use of the SVD. Two noteworthy
tensor network libraries are ITensor [41] and Tensor Network Theory (TNT) [42]. ITensor is a
purely shared memory library, while TNT is single-node GPU-accelerated. These are general-
purpose tensor network libraries that can be used to implement the operations of QCMPS on
single node architectures.

In summary, QCMPS uniquely combines distributed memory parallelism for one-dimensional
quantum circuit simulation with original features such as LNNGBCGs and noisy MPDO func-
tionality.

28

Chapter 3

Shor’s Algorithm Simulations

In order to benchmark our MPS library QCMPS, we apply a similar technique to [24] with
additional optimisations to perform a simulation of Shor’s algorithm [2] for factoring semiprime
integers. We will present the optimisations used to factor a semiprime of 20 binary digits
through a simulation of a high-level quantum circuit for Shor’s algorithm requiring 60 qubits.
For comparison, a state vector for 60 qubits requires us to store 260 complex scalars. At
double precision (64 bit real and 64 bit imaginary components), this requires a minimum storage
capacity of 16 EiB, more than the available memory of any currently existing supercomputer
today [15]. The MPS approach from [24] of simulating Shor’s algorithm is able to reduce the
memory requirements by quantifying the amount of entanglement in relation to the factored
semiprime and other parameters. However, through our optimisations, we introduce an even
more efficient method, allowing us to simulate a 60 qubit instance of Shor’s algorithm with
parameters that would be considered infeasible by the method of [24]. This stands as potentially
the largest simulation of a non-trivial quantum circuit ever performed.

3.1 Review of Shor’s algorithm

Shor’s algorithm [2] can be used to factor a semiprime integer N = p × q of l binary digits in
polynomial time with respect to l on a quantum computer. Presently, there is no known algo-
rithm to perform this factorisation efficiently (i.e. in polynomial time) on a classical computer.
The presumed difficulty of factoring very large semiprime numbers is the foundation beneath
the security of the RSA public key cryptosystem [9] used to secure online communications [43],
thus providing the motivation to build quantum computers capable of performing large enough
instances of Shor’s algorithm and to develop public key cryptosystems resistant to quantum
computers [10]. For this review, we perform the circuit shown in Fig. 3.1.

Given N , a semiprime integer represented by at least l binary digits, a high-level circuit for
Shor’s algorithm as detailed in [39] consists of a ‘lower’ register R of l qubits initialised to the
state |1〉 and an ‘upper’ register of 2l qubits initialised to |0〉:

|ψinit〉 ← |0〉 |1〉 .

The Hadamard gate, Eq. (2.3), is then applied to each qubit of the upper register, creating the
superposition

|ψsuperpos〉 ← (H⊗2l)⊗ (I⊗l) |ψinit〉

=
22l−1∑
i=0

|i〉 |1〉 ,

29

3.1. REVIEW OF SHOR’S ALGORITHM

q3 : |0〉 H •

q2 : |0〉 H •

q1 : |0〉 H •

q0 : |0〉 H •

R : |1〉 / U23 U22 U21 U20

(a) Application of the controlled exponentiated U gates and measurement of the
lower register

q3

QFT4

H • ×

QFT3
q2 1 × • ×

q1
=

2 × • ×

q0 3 ×

(b) The LNN quantum Fourier transform on the 4 upper register qubits, with
interleaved measurement. The phase gate labelled by n performs |0〉 → |0〉 and
|1〉 → exp(−iπ/2n) |1〉.

Figure 3.1: The two main stages of Shor’s algorithm. Shown for l = 2, qubits qi form the upper
register of 2l qubits and bundle R forms the lower register of l qubits. q0 is the least significant
bit of the upper register.

where we shall ignore normalisation constants in this explanation for clarity. Choosing a random
integer a such that 1 < a < N , exponents of the unitary operator

U : U |x〉 = |ax mod N〉 (3.1)

are applied to the lower register, controlled by qubits in the top:

|ψmodexp〉 ←
22l−1∑
i=0

|i〉U i |1〉

=
22l−1∑
i=0

|i〉
∣∣ai mod N

〉
=

r−1∑
j=0

kr+j<22l

∑
k=0

k<22l/r

|kr + j〉
∣∣aj mod N

〉
, (3.2)

where r is the period of U . To determine this period r, the lower register is measured, forcing
a choice of the index j in Eq. (3.2). This collapses the entanglement between the two registers,
and we can now separate them. The upper register is now in state

|ψupper〉 ←
∑
k=0

k<22l/r

|kr + j〉 (3.3)

for the 0 ≤ j < r corresponding to the value (aj mod N) measured from the lower register in

30

3.2. ENTANGLEMENT IN SHOR’S ALGORITHM

Eq. (3.2). The circuit up to this point is shown in Fig. 3.1a.
The quantum Fourier transform (QFT), whose circuit is displayed in Fig. 3.1b, is then

applied to this upper register:

QFT |ψupper〉 =
22l−1∑
s=0

∑
k=0

k<22l/r

e2πi(kr+j)s/2
2l |s〉

=
22l−1∑
s=0

e2πijs/2
2l
∑
k=0

k<22l/r

e2πikrs/2
2l |s〉 .

The upper register is then measured to produce a value s with probability proportional to∣∣∣∣∣∣∣∣
∑
k=0

k<22l/r

e2πikrs/2
2l

∣∣∣∣∣∣∣∣
2

.

This implies that values of s such that rs/22l is close to an integer are more likely to be
measured, and concludes the quantum processing component of Shor’s algorithm. s can be
classically processed from here to produce r with high probability, by using the continued
fractions algorithm on s/22l, and if r is even, the Euclidean algorithm is used to find the
greatest common divisor between ar/2 ± 1 and N , producing factors p and q of N [39].

3.2 Entanglement in Shor’s algorithm

Since the space usage of an MPS scales with the amount of entanglement in the state, we should
first examine the entangling properties of Shor’s algorithm in order to determine an efficient
embedding of the circuit’s 3l qubits into an MPS with inherently linear connectivity. Eq. (3.3)
for the state |ψupper〉 of the upper register following measurement of the lower register R tells
us that |ψupper〉 is an evenly weighted superposition of computational basis states separated by
r, the period of unitaries U from Eq. (3.1):

|ψupper〉 =
∑
k=0

k<22l/r

|kr + j〉 .

If r can be factored such that r = β × 2α where β is odd, the last α bits in the binary
representation of each computational basis element in the superposition |ψupper〉 must be iden-
tical. That is, measurement of R fully determines the least significant α qubits of the upper
register. Therefore, immediately prior to the measurement of R, these α least significant qubits
of the upper register only exhibit entanglement with R, and not between themselves or other
qubits of the upper register. The entanglement related to the factor β of r is spread across the
remaining 2l − α most significant qubits of the upper register and the l-qubit lower register
R immediately prior to R’s measurement, since it cannot be localised to individual qubits by
virtue of β’s parity (odd). Following the measurement of the lower register, the entanglement
between the α least significant qubits of the upper register with the lower register is collapsed,
leaving these α qubits completely separable. The entanglement between the remaining 2l − α
qubits of the upper register with the lower register is also collapsed, leaving these 2l−α qubits
entangled only with each other.

31

3.3. MPS SIMULATION APPROACH

This suggests a further partitioning of the upper register. From now on, we will refer to
the set of α least significant qubits in the upper register as A, and the remaining 2l − α most
significant qubits of the upper register as B.

3.3 MPS simulation approach

3.3.1 Previous approaches

A high-level distributed memory simulation of Shor’s algorithm was performed by Wang, Hill
and Hollenberg in [24]. To briefly summarise their method, the lower register R of Shor’s al-
gorithm was kept contracted as a sparse MPS tensor for a 2l dimensional qudit, only storing
tensor indices corresponding to the values currently occupied in the lower register as the con-
trolled exponentiated U gates are sequentially applied (Fig. 3.1a) to produce Eq. (3.2). With
R initialised to |1〉, each of the 2l upper register qubits qi for 0 ≤ i < 2l is entangled with R
by applying the following procedure to each qi in order of descending i:

• An initially separable qubit qi is inserted between the previous upper register qubit and
R by altering the bond sizes appropriately and is initialised to the state (|0〉+ |1〉 /

√
2 to

represent the initial round of Hadamard gates.

• The gate U2i , which may be formed by repeated squaring of U in Eq. (3.1), is applied to
R and controlled by qi. This involves contracting qi with R beforehand.

• This contraction is then decomposed back into qubit qi and the lower register qudit R
by using the trivial decomposition Eq. (2.1). By Eq. (3.2), we do not require rank
minimisation through a rank revealing decomposition at this stage, so the apparent rank
from the trivial decomposition is equal to the Schmidt rank.

The authors of [24] note that these steps may be combined into a single operation for a qubit
qi. In our simulation, we were able to replicate this operation through sufficient bookkeeping of
indices. The effect of these controlled operations between each of the 2l upper register qubits
with the lower register R is to quickly initialise an MPS that encodes the state |ψmodexp〉 in Eq.
(3.2). Since all upper register qubits are on one side of the lower register qudit, applying these
controlled gates ensures that the Schmidt ranks at each bipartition are non-decreasing toward
the lower register qudit, culminating in a rank of r from Eq. (3.2) between the least significant
qubit q0 of the upper register with the lower register. Since R’s tensor only stores indices for
occupied values, it is treated as an r-dimensional qudit at this point, also from Eq. (3.2).

This MPS is not in canonical form, since the trivial decomposition was used instead of the
SVD. As such, the authors perform measurement of the lower register by directly calculating
R’s reduced density matrix through a tensor network contracting involving all upper register
qubits, in a similar fashion to Fig. 2.7b. R is then measured, and entanglement is collapsed
to reduce space usage by performing a sweep outward from R using the SVD. Since the lower
register is now separable at this stage, it is removed from the MPS and the remaining upper
register of 2l qubits encodes the state |ψupper〉 in Eq. (3.3).

Puzzlingly, the quantum Fourier transform (QFT) is performed in [24] with non-LNN gates,
sequentially contracting qubits together and eventually resulting in a 22l dimensional state
vector of the upper register. An LNN circuit for the QFT does exist [44], as shown in Fig. 3.1b,
and is more suitable for MPS simulation since contraction into a state vector ultimately limits
the size of the simulation. However, the full contraction approach does perform exceptionally
well timewise due to parallelism and a lack of decomposition. Though in that case, since the
QFT is numerically identical to the discrete Fourier transform (DFT) on the elements of a

32

3.3. MPS SIMULATION APPROACH

quantum state vector, the authors could instead have used a distributed DFT library such as
FFTW [45] on the upper register’s state vector for greater performance if they were willing to
accept the memory costs of contracting to a state vector, since this is a high-level simulation
after all.

It is also worth noting that this state vector for the final state of the upper register depends
on the result measured in the lower register, and may differ based on this result. By the principle
of implicit measurement [39, section 4.4], the final upper register measurement statistics of
Shor’s algorithm should not depend on a measurement of the lower register: we describe it for
clarity and use it to collapse entanglement in our MPS. Therefore, providing the full state vector
of the combined lower and upper registers, or the reduced density matrix of the upper register
(or perhaps even just its diagonal elements, corresponding to the upper register’s measurement
probabilities) should increase the consistency of their method.

3.3.2 Simulation through QCMPS

To avoid entirely contracting an MPS to return a state vector which would negate any space
savings, we instead decided to simulate Shor’s algorithm as a sampling problem. That is, when
Shor’s algorithm is run on actual quantum computing hardware, only measurement operations
allow us to extract information from the quantum state. The results of these measurements are
distributed according to some discrete probability distribution dictated by the quantum circuit
itself. Instead of requiring an entire state vector from our simulation, like [24] provides, we
instead only wish to perform measurement operations whose results sample from the underlying
distribution. In this way, our simulation mimics the process of a quantum computer. Performing
simulations in this way is ideal for MPS, since it mitigates the need to contract to a state vector,
and the entanglement collapse following a measurement reduces memory usage.

From the description of Shor’s algorithm in section 3.1, the coefficients in all quantum states
prior to the QFT are real. Therefore, we can approximately halve our time and space require-
ments for this section by storing our MPS elements as real scalars instead of complex scalars
of equal precision per [24], and then converting to complex scalars prior to the QFT. These
savings come at an opportune time due to the amount of entanglement before measurement of
the lower register R.

The centrepiece of our additional optimisations, however, is to make the lower register
qudit R, well, the centrepiece of our MPS. When considering the entangling properties of
Shor’s algorithm as detailed in section 3.2, if A is the set of α least significant qubits of the
upper register, where r = β × 2α, and B consists of the remaining qubits in the upper register,
then the approach of [24] is to initialise an MPS in the order B:A:R. This has a significant
space disadvantage, since A is not entangled to B, but the entanglement between B and R
crosses through A and multiplies the Schmidt ranks within A by β. Instead, we have chosen to
perform our simulations by positioning our partitions as B:R:A in our MPS, which allows direct
connectivity, representing the multipartite entangling structure of Shor’s algorithm, between
R with A and R with B. With this layout, each of the α qubits in A stores β−2 as many
elements in its tensor when compared with [24] (a factor of β−1 each for the left and right
bonds). Therefore, we can better classify the difficulties of simulating Shor’s algorithm through
not just r as believed in [24], but also through the factors of r. A schematic example is shown
in Fig. 3.2.

Since our simulation should not depend on knowing the values r, α or β beforehand, we must
be able to dynamically detect the transition from qubits in B to qubits in A when applying the
controlled exponentiated U gates. In section 3.2, we noted that there was entanglement between
the qubits in B and R, and also amongst the qubits in B when all controlled exponentiated U
gates have been applied. Therefore, as more and more controlled U gates are operated on qubits

33

3.4. BENCHMARKS

R
27

A
22

B
212

3 12

(a) The MPS qudit layout of [24]

R
27

A
22

B
212

3 4

(b) Our MPS qudit layout, showing lower space requirements for A

Figure 3.2: A comparison of the two MPS layouts of qudit groups B, A and R. In this example,
l = 7, N = 65 and a = 2, producing r = 12 = 3× 22. A consists of α = 2 qubits, B consists of
the remaining 2l− 2 = 12 qubits, and R is the lower register of l = 7 qubits. Index dimensions
are indicated, and bond tensors are omitted due to the use of the trivial decomposition.

in order of descending significance, the Schmidt ranks with R will temporarily stop increasing
(at a value of β) when this amount of entanglement has been reached. Only when we start
operating on qubits in A does the entanglement to R begin to increase again. By detecting this
plateau and subsequent rise in the Schmidt ranks, we can detect the boundary between A and
B and begin to place qubits from A on the opposite side of R.

Local MPS measurement of the lower register requires it to be in canonical form. When
sufficiently many controlled exponentiated U gates have been operated to initialise the systems
B:R, we perform a right sweep to left canonicalise the qubits of B before the qudit tensor of R
increases in size due to entanglement with A. As each of the α qubits in A interacts with R, the
Schmidt ranks must sequentially double to reach a lower register occupancy of r = β×2α given
the contribution of β from B. Use of the trivial decomposition Eq. (2.1) therefore ensures that
the tensors of each qubit in A are reshapes of the identity matrix. Thus, right canonicalising
them is simply a matter of normalising them correctly. R is then measured to a one-dimensional
qudit per Eq. (2.7) then contracted with the smaller of its adjacent qubits to remove it. Sweeps
are then performed outward from this site to collapse entanglement with R and canonicalise
the entire MPS consisting now of systems B:A. Since the only remaining entanglement exists
between the qubits of B, the highest Schmidt rank of the MPS at this stage is β, and the qubits
of A are completely separable.

We then apply the LNN circuit for the QFT, shown in Fig. 3.1b, to our remaining qubits.
Since each controlled phase gate is immediately followed by a swap on the same qubits, we
apply these as a combined operation. We note that the structure of the LNN QFT circuit
allows us to measure any qubits that no longer require further operations. By performing these
measurements as soon as possible and recanonicalising afterwards, we help mitigate any extra
entanglement introduced during the progression of the QFT circuit.

3.4 Benchmarks

QCMPS has the option of specifying whether to use the slower but more space efficient SVD
algorithm based on QR iteration [31] implemented in ScaLAPACK [30] as used in [24], or the
faster divide and conquer algorithm [33] unique to Elemental [32], ontop of which QCMPS is
built. We chose to run benchmarks using the divide and conquer approach for SVD in order to
test this unique feature of QCMPS, and we use Elemental’s element-wise cyclic distribution of
tensor elements amongst the multiple processes in the process grid.

34

3.4. BENCHMARKS

We began by running the same instances benchmarked in [24] for their MPI results, also
at double precision. These were run on a single Intel Xeon Processor E5-2683 v4 with a base
core clock of 2.10 GHz, using the Intel Parallel Studio XE suite for compilers and intraprocess
BLAS and LAPACK [34] and Open MPI [46] for our MPI implementation. Despite having a
lower frequency than the unspecified AMD Opteron processors at 2.5 GHz used in [24], timing
results are still not directly comparable: factors such as compiler optimisation, instructions per
cycle (IPC) performance, cache size, available instruction sets and communication bandwidth
and latency obscure true performance differences between implementations. Furthermore, we
limited the space usage for these results to 8 GB of RAM to showcase our optimisations against
the 16 GB required in [24]. That being said, our implementation appears to result in a significant
overall performance increase (table 3.1).

l r α β nproc tU tmeas tQFT ttotal
13 3870 1 1935 4 118 24 288 420

16 48 10 105 163
14 8036 2 2009 4 146 38 585 769

16 58 15 205 278
15 16104 3 2013 4 157 48 970 1175

16 63 19 339 421

Table 3.1: QCMPS benchmarks for simulating Shor’s algorithm with our optimisations, with
times for the exponentiated U gates, measurement and QFT listed in seconds. With nproc cores,
we simulated the three cases l = 13, N = 8189, a = 10; l = 14, N = 16351, a = 2 and also
l = 15, N = 32663, a = 6.

The parameters chosen in [24] produce values of r close to its upper bound of N/2 [39],
since this was how they classified their difficulty in simulating Shor’s algorithm. Notably, [24]
shows a significant increase for the total time taken as r is increased. Our approach classifies
difficulty based on the factors of r, especially the odd factor β of r, which are similar between
these three cases. This is reflected in our results by the similarity in the times required, in that
the time required for a value of l does not quite double like in [24] when l is incremented. We
also note that [24] did not provide any results for circuits larger than l = 15. We suspect that
contracting the upper register of an l ≥ 16 case instance produces a state vector of size greater
than 232, and since the reference implementation of ScaLAPACK [30] usually indexes elements
through 32 bit integers, the code from [24] might have just failed to produce correct results for
l ≥ 16. However, without access to their source code, this remains pure speculation. QCMPS
is subject to a greater limit due to Elemental’s use of 64 bit integers for indexing.

Furthermore, our individual timings for the application of the exponentiated U gates and
the QFT appear slower than the results of [24], but this is due to our tU being used to record
the time to perform recanonicalisation and us choosing to use the LNN QFT with interleaved
measurements respectively. Our time saved in measurement more than makes up for this.
Additionally, whilst [24] is able to claim 1/nproc time scaling in his results due to the parallelism
of MPS contraction, we relied more on MPS decomposition through the SVD to keep our
memory requirements low. It would appear then that the SVD scales differently with nproc

since we do not observe 1/nproc time scaling.
To benchmark a truly distributed memory implementation, we also performed some bench-

marks across multiple nodes on Magnus [25], a Cray XC40 supercomputer with 24 cores at
2.60 GHz and 64 GB of RAM per node. The results of table 3.2 were run using the GNU Com-
piler Collection suite for compilers, OpenBLAS [35] for intranodal BLAS and LAPACK and
Cray’s proprietary MPI implementation. To especially distinguish our approach from that of

35

3.5. FUTURE SIMULATIONS

[24], we chose the parameters N = 961307 and a = 5 for our flagship l = 20 benchmark. This
has a period r = 479568 = 29973× 24. Since r here is extremely high, it would be infeasible to
simulate this in a similar fashion to [24], even if final contraction of the MPS was not performed.
In our simulation, the α = 4 qubits in A significantly decrease the amount of resources required,
just from an understanding of the entangling properties of Shor’s algorithm. As such, we were
able to perform a high-level simulation of sampling a measurement from Shor’s algorithm on
60 qubits using a total of 216 nodes, 5184 cores and 13.824 TB of memory within 8 h. This
is possibly the current largest high-level simulation of Shor’s algorithm or perhaps any other
non-trivial quantum algorithm.

l r α β nnode tU tmeas tQFT ttotal
16 28140 2 7035 2 1538 353 4290 6181
17 57516 2 14379 24 1694 406 4544 6644
20 479568 4 29973 216 4271 1496 20236 26003

Table 3.2: Further QCMPS benchmarks, this time across multiple nodes of a supercomputer.
Each node has 24 cores and 64 GB of RAM. With nnode nodes, we simulated the three cases
l = 16, N = 56759, a = 2; l = 17, N = 124631, a = 2; and also l = 20, N = 961307, a = 5.

3.5 Future simulations

Since this is only a high-level simulation of Shor’s algorithm, the next step is to perform a
simulation of a circuit for Shor’s algorithm at the gate level. Several gate-level decompositions
of Shor’s algorithm already exist [47–49], but we would have to insert our own swap gates
to map these circuits to an MPS. Instead, by using an LNN circuit for the entirety of the
quantum processing component of Shor’s algorithm (and not just for the QFT as we have in
our simulations) such as the circuit proposed by Fowler, Devitt and Hollenberg in [44], we can
make direct use of QCMPS library routines, including its linear nearest neighbour generalised
binarily controlled gates (section 2.5), to perform a low-level simulation of Shor’s algorithm. The
circuit of [44] notably requires only 2l+4 qubits to factor a semiprime of l bits, compared to the
3l of our simulation. A smaller quantum system, coupled with the intermediate measurements
made throughout the course of their circuit might lead to lower space usage than our approach.
However, we expect the 8l4 + 40l3 + 58l2 + 2l − 2 required gates to heavily increase the time
usage. With an LNN circuit for Shor’s algorithm, we can also apply the matrix product density
operator (MPDO) functionality of our library to simulate the circuit’s susceptibility toward
noise and errors.

Additionally, we might also wish to determine if similar techniques for manipulating the
multipartite entanglement in Shor’s algorithm for semiprime factorisation may also be applied
to the discrete logarithm problem [2] on which elliptic curve cryptograph [50] is based.

36

Chapter 4

Google Supremacy Circuit Simulations

In the last chapter, we investigated MPS methods for simulating Shor’s algorithm [2]. This
algorithm allows a quantum computer to factor a semiprime integer in polynomial time with
respect to its length in digits, a feat not demonstrated on a classical computer. Algorithms
that show an apparent advantage of quantum computation over classical computation allude
to an inherent ‘quantum supremacy’ over classical models of computation (of which the Turing
machine [1] is one).

This notion of quantum supremacy has lead to the development of problems to specifically
pinpoint instance sizes efficiently solvable on an ideal quantum computer but infeasible on
any reasonable amount of classical computational hardware. There are several theoretical and
experimental challenges in demonstrating quantum supremacy, however. Open questions in
computer science regarding complexity theory (of which P versus NP [51] is a famous instance)
currently prevent us from making concrete claims of any theoretical quantum supremacy: for
example, if an efficient classical algorithm for integer factorisation did exist, then performing a
sufficiently large instance of Shor’s algorithm on a quantum computer would not demonstrate
supremacy. Implementing quantum hardware resistant enough from decoherence and noise
effects to perform large enough instances to demonstrate supremacy is also experimentally
challenging.

Further examples [13] of problems for demonstrating quantum supremacy include boson
sampling [52], where the aim is to accurately sample the outputs of a linear optics network
with single photon inputs. Through combinatorial arguments [14], the supremacy point of a
linear optics quantum computer is expected to be around 50 single photon inputs for boson
sampling.

In this chapter, we examine the problem of sampling from random quantum circuits with
a structure proposed by Google’s Boixo and Isakov et al. in [17]. Henceforth, we shall refer
to this problem as the Google supremacy problem. Specifically, we wish to determine if MPS
techniques can be applied for classical simulation of similar circuits to refine this problem’s
supremacy point.

4.1 Introduction to the Google supremacy problem

Google’s supremacy problem [17] involves sampling measurements from the results of specific
randomly generated circuits on a two-dimensional nearest-neighbour architecture. If a random
circuit U operates |ψ〉 ← U |ψ〉 on an n qubit system (or equivalently, a single N ≡ 2n level
system), the problem for either a classical computer or experimental implementation of a quan-
tum computer is to sample bit strings x ∈ {0, 1}n in, say, the computational basis according to
the probability distribution resulting from applying U .

The random two-dimensional circuits are generated according to a basic structure defined

37

4.1. INTRODUCTION TO THE GOOGLE SUPREMACY PROBLEM

in [17, section IV]. To briefly review, n qubits are arranged in a rectangular grid of dimensions
p× q and the state is initialised to |0〉⊗n. The Hadamard gate H of Eq. (2.3) is applied to each
qubit in the zeroth clock cycle. The other gates used in this circuit have the following matrix
representations in the computational basis:

CZ =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

, √
X =

1√
2

[
1 −i
−i 1

]
,
√
Y =

1√
2

[
1 −1
1 1

]
, T =

[
1 0
0 eiπ/4

]
. (4.1)

For each following clock cycle,

• a configuration of nearest neighbour controlled Z (CZ) gates is applied from a cycle of
eight possible configurations [17, Fig. 6], and

• for a qubit q that was operated on by a CZ gate of the last clock cycle but not of this
current clock cycle, the T gate is applied to q if q’s previous single qubit gate was the

initial Hadamard, else a random gate sampled uniformly from
{√

X,
√
Y , T

}
that is

different from the last single qubit applied to q is applied.

An example for the beginning of a random circuit in one-dimension is given in Fig. 4.1, where
there are three CZ configurations to cycle through instead of the eight for the two-dimensional
problem.

|0〉 H • T •
√
X •

|0〉 H • • T • •
√
X •

|0〉 H • • T • •
√
Y

|0〉 H • T • •
√
X • •

. . .

|0〉 H • • T • •
√
Y •

|0〉 H • T •
√
Y

Figure 4.1: An example circuit for the Google supremacy problem in one dimension. Note the
three cycling configurations of CZ gates instead of the eight for the two-dimensional case.

If the set of probabilities pU(x) ≡ Pr(XU = x) = |〈x|ψ〉|2 of measuring bit string x ∈ {0, 1}n
for discrete random variable XU is produced by circuit U , U can be performed m times to
produce a sample S = {x1, . . . , xm} of measured bit strings xj with probability PrU(S) =∏

xj∈S pU(xj). By rearranging, the central limit theorem implies that

− 1

m
log(PrU(S))→ H(XU) (4.2)

as the sample size m is increased, where

H(XU) = −
∑
x

pU(x) log(pU(x))

is the entropy of XU .

38

4.1. INTRODUCTION TO THE GOOGLE SUPREMACY PROBLEM

As the number of clock cycles of circuit U increases, it is argued with accompanying numer-
ical evidence in [17] that the probabilities pU(x) are independent and identically distributed
with probability density function converging to the Porter-Thomas distribution

Pr(a ≤ pU(x) ≤ b) =

∫ b

a

Ne−Np dp , (4.3)

where N = 2n is the number of possible bit strings measurable from n qubits. In this case, a
change of variable yields

H(XU) = −N
∫ ∞
0

p log(p)Ne−Np dp

= log(N)− 1 + γ, (4.4)

where γ is the Euler-Mascheroni constant.
Consider an algorithm A that takes a specification of the (gates of) circuit U and produces a

sample SA =
{
xA1 , . . . , x

A
m

}
of resulting bit strings, where each result is produced with probabil-

ity pA(U)(x) ≡ Pr(XA(U) = x) for random variable XA(U). The probability PrU(SA) of actually
observing this sample from circuit U has a similar expression to Eq. (4.2):

− 1

m
log(PrU(SA))→ H(XA(U), XU),

in the large m limit by the central limit theorem, where

H(XA(U), XU) = −
∑
x

pA(U)(x) log(pU(x))

is the cross entropy of XA(U) with respect to XU . Note that if algorithm A is to just sample
from U itself, then this reduces to Eq. (4.2).

Instead, if an algorithm randomly samples bit strings uniformly such that p0(x) ≡ Pr(X0 =
x) = 1/N for random variable X0, we have

H0 ≡ H(X0, XU)

= −
∑
x

1

N
log(pU(x))

= −N
∫ ∞
0

1

N
log(p)Ne−Np dp

= log(N) + γ. (4.5)

This is used to define the cross entropy difference, a measure of how effectively an algorithm A
can sample from the distribution of circuit U when compared to a uniform sampler:

∆H(XA(U)) ≡ H0−H(XA(U), XU). (4.6)

From this, the fidelity α at which A can sample from a general circuit U of depth d is given by
the ensemble average of the cross entropy difference across all circuits of depth d:

α = EU

[
∆H(XA(U))

]
. (4.7)

From Eqs. (4.4) and (4.5), α = 1 when an ideal sampler is considered, so in general, 0 ≤ α ≤ 1.
The Google problem defines that quantum supremacy is achieved by a physical quantum

39

4.2. ONE-DIMENSIONAL CIRCUIT

computer that can achieve a higher fidelity than C, the highest fidelity attainable by a classically
performed algorithm A. In [17, section V], computational complexity arguments are made to
support the claim that high fidelity can only be classically achieved via a direct simulation of
circuits U . Supercomputers currently exist [15] with enough memory to store the state vector
of n = 48 qubits in single precision, requiring 4 PiB of memory. Hence, quantum supremacy
is unattainable below this number of qubits, neglecting error in floating-point arithmetic. For
larger systems, the depth d to reach the Porter-Thomas distribution, Eq. (4.3), cripples the
lower bound of C for polynomially sized samples of Feynman paths [17, appendix H].

Our aim for the rest of this chapter is to investigate whether or not matrix product tech-
niques can be applied to raise this lower bound for C.

4.2 One-Dimensional Circuit

The original Google problem defines the random circuits using nearest neighbour CZ gates on a
two-dimensional array of qubits. However, the rules for generating these random circuits easily
generalise to an LNN version, ideal for simulation through QCMPS. Rather than simulating
the original two-dimensional circuits on an MPS or MPDO, we have chosen to simulate the
one-dimensional versions instead since Swap gates are not required, but also to investigate
their convergence and noise properties in comparison to the results presented by [17]. The
one-dimensional circuits cycle through three configurations of nearest neighbour CZ gates as
demonstrated in Fig. 4.1, resulting from the claim in [17] that two distinct CZ gates cannot
currently be operated simultaneously on adjacent qubits.

When simulated on an MPS, the output distributions of these circuits may be sampled by
sequentially measuring each qubit with recanonicalisation, avoiding the need to fully contract
the MPS into a state vector or the MPDO into a density matrix.

4.2.1 Porter-Thomas Convergence

As the depth d of circuit U on n qubits increases, the probability pU(x) of measuring a bit string
x follows a probability density function converging to the Porter-Thomas distribution, Eq.
(4.3). The claim in [17, section IIA] is that this required depth for convergence is proportional
to n1/D, where D is the dimensionality of the qubit array. Therefore, we expect the depth of
convergence for a one-dimensional circuit to eventually exceed that of a two-dimensional circuit
with an equal number of qubits.

We numerically simulated instances of the one-dimensional Google problem to determine
when we could expect this convergence. From Fig. 4.2, we observe that convergence occurs
approximately at least at depth d = 100 for n = 20 qubits, a much larger requirement than
Google’s analysis of the two-dimensional circuits of depths less than 40 on much larger systems
[17, Fig. 9]. Additionally, since we expect the output states to be maximally entangled, the
Schmidt ranks should saturate when convergence has been achieved. From Fig. 4.3, this only
occurs after a depth of 125 of 20 qubit circuits, again showing the larger circuit requirements
for the one-dimensional problem.

4.3 MPS Truncation

Truncation of bonds within an MPS, described in subsection 2.4.4 as a lossy compression
scheme for an MPS, allows us to approximate a quantum state with a less entangled state, and
therefore trades greater precision for a lower space requirement. If χ is the largest Schmidt
rank of a bipartition (i.e. the largest bond dimension) of an MPS of n qubits and χ is bounded

40

4.3. MPS TRUNCATION

0 25 50 75 100 125 150 175 200

Depth

6

8

10

12

14
E
n
tr
op
y

n = 10

n = 12

n = 14

n = 16

n = 18

n = 20

Figure 4.2: Mean output distribution entropies as a function of circuit depth. Sampled over
100 random circuits each, the error bars represent one standard deviation. The black dashed
lines are the respective Porter-Thomas entropies for the number of qubits n.

0 25 50 75 100 125 150 175 200

Depth

22

24

26

28

210

G
re
at
es
t
S
ch
m
id
t
R
an
k

n = 10

n = 12

n = 14

n = 16

n = 18

n = 20

Figure 4.3: Mean maximum Schmidt ranks in the MPS as a function of depth. Sampled over
100 instances, the shading represents one standard deviation.

41

4.4. MPDO NOISE CHANNEL SIMULATIONS

polynomially in n, then the space requirements of such an MPS also scale polynomially in n
and gate operations can be simulated in polynomial time [21].

When the one-dimensional Google problem with sufficient depth for the measurement prob-
abilities to converge to the Porter-Thomas distribution is performed, the resulting state should
be highly entangled, producing an MPS without any space or time advantage over a state vec-
tor. Therefore, we perform truncation across all clock cycles by truncating every MPS bond
following a CZ gate (the only multiple qubit gate used in the Google problem and hence the
only one capable of raising the Schmidt rank of a bipartition) to some maximum Schmidt rank
χ. Each of these truncations is performed without the accompanying recanonicalisation sweeps,
but a full recanonicalisation with renormalisation is performed just prior to final measurement.

We may now investigate the fidelity associated with truncated MPS simulations of the one-
dimensional Google problem. Fig. 4.4 shows the fidelity α of a 20 qubit circuit dropping with
respect to the circuit depth, as we expect for truncated MPSs. If we consider the χ = 256
case (a truncation factor of 0.25 for 20 qubits), corresponding to the maximum Schmidt rank
achievable with an n = 16 circuit, it appears that a fidelity of α ≈ 0.3 may still be achieved
if we consider Porter-Thomas convergence to have occurred at a depth of 150. If this trend
continues to larger one-dimensional circuits, it might be possible to simulate up to four more
qubits up to this depth than an untruncated MPS, with still very acceptable fidelity. However,
we lack to numerical evidence to support this claim at the moment.

50 100 150 200 250 300

Depth

0.0

0.2

0.4

0.6

0.8

1.0

α

χ = 256

χ = 512

χ = 768

χ = 1024

Figure 4.4: Mean fidelities α for n = 20 qubits at different truncation ranks χ. Note that α is
only meaningful when convergence to the Porter-Thomas distribution has occured. Error bars
represent one standard deviation.

4.4 MPDO Noise Channel Simulations

The fidelity α from Eq. (4.7) of some sampling algorithm to an ideal sampler may also describe
experimental implementations of quantum hardware, subject to noise and errors during the

42

4.4. MPDO NOISE CHANNEL SIMULATIONS

course of a circuit. In [17, section III], a discrete error model consisting of bit-flip, Eq. (2.12),
and depolarising channels, Eq. (2.13), was considered in order to simulate the sampling results
that experimental quantum hardware might produce. Specifically, a bit-flip channel is placed
after each qubit immediately following initialisation of the state to |0〉⊗n with probability rinit
to simulate initialisation errors, and immediately preceding final measurement with probabil-
ity rmeas to simulate measurement errors. A two-dimensional (four-dimensional) depolarising
channel is applied following each one (two) qubit gate with probability 4

3
r1 (16

15
r2) to simulate

one (two) qubit errors. These normalisation prefactors of 4
3

and 16
15

occur in order to keep our
description of the depolarising channel consistent with [17].

Since the fidelity α of some sampler A requires the cross entropy difference, Eq. (4.6), of
A with an ideal sampler of U , calculating α becomes difficult when the number of qubits n is
large, since the cross entropy difference requires access to the individual probabilities pU(x) of
measuring each bit string x from circuit U . It is argued in [17, appendix A] with numerical
evidence that the fidelity α can be easily related to the error rates via

α ≈ exp(−r1g1 − r2g2 − rinitn− rmeasn), (4.8)

where g1 (g2) is the total number of one (two) qubit gates. This allows us to estimate the cross
entropy difference without access to each probability pU(x). To provide numerical evidence of
Eq. (4.8) for the one-dimensional Google problem, we simulated this error model in Fig. 4.5 by
averaging across many MPS simulations where bit-flips and depolarisations had their respective
probabilities to occur at their respective locations.

0 2 4 6 8 10

Normalised Measurement Probability Np

10−4

10−3

10−2

10−1

100

101

N
or
m
al
is
ed

F
re
q
u
en
cy

P
r(
N
p
)

Porter-Thomas

r = 0.0020

r = 0.0010

r = 0.0004

r = 0.0002

r = 0.0000

Figure 4.5: Output distributions on n = 20 qubits for different fidelites, corresponding to
approximate fidelites α ∈ {0.11, 0.34, 0.65, 0.8, 1} in order of descending error rate, with rinit =
rmeas = r2 = 10r1 = r.

We find good agreement with the ansatz output density matrix ρ resulting from this error

43

4.4. MPDO NOISE CHANNEL SIMULATIONS

model, given by [17, Eq. (20)]

ρ = α |ψd〉〈ψd|+ (1− α)
IN
N
,

where ψd is the state resulting from circuit U without errors and the combined results of the
errors is to depolarise |ψd〉〈ψd| with probability (1− α) (c.f. Eq. (2.13)). The slight differences
in the widths and shapes of the distribution arise from the number samples we took, as well as
residual correlations after the error operations [17, appendix A].

Classical simulation of this error model is possible using the MPDO formalism implemented
in QCMPS. Given a set of error rates r{1,2,init,meas} for the model, it is possible that the en-
tanglement between qubits in the MPDO introduced by the CZ gates is also collapsed by the
noise channels. Since the space requirements for a MPDO of maximal Schmidt rank, O(22n),
are much greater than that of an MPS of maximal Schmidt rank, O(2n), only sufficiently large
error rates can be classically simulated. For circuits with sufficient clock cycles to exhibit
Porter-Thomas convergence, this may result in significant loss of fidelity, especially since scal-
ing of the convergence depth in the one-dimensional Google problem is worse compared to the
two-dimensional problem.

0 25 50 75 100 125 150 175 200

Depth

0

200

400

600

800

G
re
at
es
t
S
ch
m
id
t
R
an
k

r = 0.16

r = 0.20

r = 0.24

r = 0.28

Figure 4.6: Schmidt ranks within a 20 qubit MPDO for error rates rinit = rmeas = r2 = 10r1 = r.
Error bars represent one standard deviation, and the black bar represents the Schmidt rank
where the MPDO’s space usage matches an MPS also on 20 qubits.

Our results of Fig. 4.6 demonstrate the capacity for noise channels to collapse entanglement
within an MPDO, but the added space usage of the density matrix formalism imposes a mini-
mum set of error rates in order to scale to a larger number of qubits. Coupled with the increased
depth of our one-dimensional circuits to achieve Porter-Thomas convergence, fidelity is greatly
diminished. Therefore, we concede that the one-dimensional Google problem is resistant to our
MPDO approach.

44

Chapter 5

Conclusion

To simulate the circuits of Shor’s algorithm and the Google supremacy problem, we developed
the highly optimised numerical library QCMPS for manipulating matrix product states and
matrix product density operators. Conventionally, it is tailored for simulations of quantum
circuits, but may readily be extended to perform simulations of other algorithms pertinent to
condensed matter physics, such as the density matrix renormalisation group method and time-
evolving block decimation. This library introduces several unique features, including more
efficiently simulating specific linear nearest neighbour binarily controlled gates on potentially
many sites of a pure state. It also uniquely implements the matrix product density operator
formalism for simulating density matrices, allowing error models for the noise and decoherence
effects experienced by a physical quantum machine to be simulated in a manner that takes
advantage of the scaling in the simulation time and space requirements with respect to en-
tanglement. Crucially, QCMPS was developed for distributed memory architectures, allowing
it to scale to take advantage of the greater amounts of computational resources provided by
supercomputers or computer clusters.

Building upon previous methods for simulating Shor’s algorithm for semiprime factorisation,
we described additional optimisations for our own implementation. Among these optimisations
is the choice of simulating Shor’s algorithm as a sampling problem, mimicking the process by
which a real quantum computer might extract meaningful information from a quantum state
produced by Shor’s algorithm. As a sampling problem, the subsequent measurements made
during the quantum Fourier transform serve to mitigate entanglement introduced by its gates,
reducing rather than increasing the space requirements to perform this subroutine of Shor’s
algorithm.

By effectively characterising the multipartite entanglement over the course of Shor’s algo-
rithm and sensibly mapping it to a matrix product state of linear connectivity, we were able
to refine previous estimates for the required simulation costs that were based on the period r
to, instead, the factors of r. The culmination of all our optimisations combined is a successful
simulation of a specifically chosen 60 qubit instance that previous estimations would have found
extremely difficult space-wise, but one that we would ultimately perform with approximately
14 TB of memory over 8 h. Despite being a high-level simulation, this is still potentially the
largest instance of a non-trivial quantum algorithm ever performed.

To extend our simulations of Shor’s algorithm, it would be prudent to consider simulating
a gate-wise decomposed circuit for Shor’s algorithm, particularly decompositions into linear
nearest neighbour gates that fit well with the linear connectivity of matrix product states.
Doing so would also open the possibility of performing these simulations using the matrix
product density operator functionality of QCMPS to examine the circuit’s resilience to specific
error models. Additionally, we might also wish to perform these simulations of Shor’s algorithm
when applied to the discrete logarithm problem as it appears in, say, elliptic curve cryptography.

45

We then turned our sights to Google’s supremacy problem, which involves sampling the
measurement results from the specification of a random circuit. Though the original circuits
use nearest neighbour gates on 2-dimensional qubit arrays, we decided instead to approach
the one-dimensional versions due to their suitability for our matrix product states and density
operators.

Ultimately, we found that the amount of gates in a random one-dimensional circuit of
the Google supremacy problem required for the measurement probabilities to converge to the
Porter-Thomas distribution was significantly higher than 2-dimensional circuits over the same
number of qubits. This increase in the number of gates results in the one-dimensional cir-
cuits being less resilient to errors described by the model given by Google, but also to matrix
product state truncation. We were able to demonstrate this decay in sampling fidelity due to
matrix product state truncation and, separately, Google’s error model involving bit-flip and
depolarising channels. Use of QCMPS’ matrix product density operator functionality allowed
us to observe the competing effects of the gates introducing entanglement and the depolarising
channels collapsing it. For sufficiently high error rates, these circuits are viably simulated but
result in poor sampling fidelity, affirming the one-dimensional Google problem’s resistance to
our matrix product methods.

Our goal from here is to extend the functionality of QCMPS by improving its interface
and implementing better support for general matrix product operators. To achieve feature
parity with other existing quantum simulators or tensor network libraries, we might also wish
to implement support for general tensor networks, of which matrix product states and matrix
product operators and density operators form a small subset, and also for increasingly popu-
lar heterogeneous GPU-accelerated computing architectures. As it stands, however, QCMPS
should serve as a valuable tool for matrix product simulations of quantum algorithms.

46

Bibliography

1A. M. Turing, “On computable numbers, with an application to the entscheidungsproblem”,
Proceedings of the London Mathematical Society s2-42, 230–265 (1937).

2P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on
a quantum computer”, SIAM Journal on Computing 26, 1484–1509 (1997).

3R. Jozsa and N. Linden, “On the role of entanglement in quantum-computational speed-
up”, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences 459, 2011–2032 (2003).

4C. H. Bennett, “Notes on landauer’s principle, reversible computation, and maxwell’s demon”,
Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of
Modern Physics 34, Quantum Information and Computation, 501–510 (2003).

5A. C.-C. Yao, “Quantum circuit complexity”, in Proceedings of 1993 ieee 34th annual foun-
dations of computer science (Nov. 1993), pp. 352–361.

6E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, “Quantum Computation by Adiabatic
Evolution”, eprint arXiv:quant-ph/0001106 (2000).

7L. K. Grover, “A fast quantum mechanical algorithm for database search”, in Proceedings of
the twenty-eighth annual acm symposium on theory of computing, STOC ’96 (1996), pp. 212–
219.

8J. Daemen and V. Rijmen, The design of Rijndael: AES — the Advanced Encryption Standard
(Springer-Verlag, 2002), p. 238.

9R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and
public-key cryptosystems”, Commun. ACM 21, 120–126 (1978).

10D. J. Bernstein, “Introduction to post-quantum cryptography”, in Post-quantum cryptogra-
phy, edited by D. J. Bernstein, J. Buchmann, and E. Dahmen (Springer Berlin Heidelberg,
Berlin, Heidelberg, 2009), pp. 1–14.

11A. Montanaro, “Quantum algorithms: an overview”, npj Quantum Information 2, 15023,
15023 (2016).

12A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, “Surface codes: towards
practical large-scale quantum computation”, Phys. Rev. A 86, 032324 (2012).

13A. P. Lund, M. J. Bremner, and T. C. Ralph, “Quantum sampling problems, BosonSampling
and quantum supremacy”, npj Quantum Information 3, 15, 15 (2017).

14B. T. Gard, K. R. Motes, J. P. Olson, P. P. Rohde, and J. P. Dowling, “An introduction to
boson-sampling”, in From atomic to mesoscale (WORLD SCIENTIFIC, 2015) Chap. Chapter
8, pp. 167–192.

15H. Meuer, E. Strohmaier, J. Dongarra, H. Simon, and M. Meuer, Top500, (Oct. 2017) https:
//www.top500.org/.

47

BIBLIOGRAPHY

16M. J. Bremner, R. Jozsa, and D. J. Shepherd, “Classical simulation of commuting quantum
computations implies collapse of the polynomial hierarchy”, Proceedings of the Royal Society
of London A: Mathematical, Physical and Engineering Sciences 467, 459–472 (2010).

17S. Boixo, S. V. Isakov, V. N. Smelyanskiy, R. Babbush, N. Ding, Z. Jiang, M. J. Bremner,
J. M. Martinis, and H. Neven, “Characterizing Quantum Supremacy in Near-Term Devices”,
ArXiv e-prints (2016).

18J. Johansson, P. Nation, and F. Nori, “Qutip 2: a python framework for the dynamics of open
quantum systems”, Computer Physics Communications 184, 1234–1240 (2013).

19M. Smelyanskiy, N. P. D. Sawaya, and A. Aspuru-Guzik, “qHiPSTER: The Quantum High
Performance Software Testing Environment”, ArXiv e-prints (2016).

20R. Orús, “A practical introduction to tensor networks: matrix product states and projected
entangled pair states”, Annals of Physics 349, 117–158 (2014).

21G. Vidal, “Efficient classical simulation of slightly entangled quantum computations”, Phys.
Rev. Lett. 91, 147902 (2003).

22U. Schollwöck, “The density-matrix renormalization group in the age of matrix product
states”, Annals of Physics 326, 96–192 (2011).

23G. Vidal, “Classical Simulation of Infinite-Size Quantum Lattice Systems in One Spatial
Dimension”, Physical Review Letters 98, 070201, 070201 (2007).

24D. S. Wang, C. D. Hill, and L. C. L. Hollenberg, “Simulations of shor’s algorithm using matrix
product states”, Quantum Information Processing 16, 176 (2017).

25The Pawsey Supercomputing Centre, The pawsey supercomputing centre, (Oct. 2017) https:
//www.pawsey.org.au/.

26S. van der Walt, S. C. Colbert, and G. Varoquaux, “The numpy array: a structure for efficient
numerical computation”, Computing in Science Engineering 13, 22–30 (2011).

27M. P. Forum, Mpi: a message-passing interface standard, tech. rep. (Knoxville, TN, USA,
1994).

28E. Solomonik, D. Matthews, J. R. Hammond, J. F. Stanton, and J. Demmel, “A massively
parallel tensor contraction framework for coupled-cluster computations”, Journal of Parallel
and Distributed Computing 74, 3176–3190 (2014).

29J. A. Calvin and E. F. Valeev, Tiledarray: a general-purpose scalable block-sparse tensor
framework, https://github.com/valeevgroup/tiledarray.

30L. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Ham-
marling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. Whaley, “Scalapack: a linear
algebra library for message-passing computers”, in In siam conference on parallel processing
(1997).

31G. Golub and C. Van Loan, Matrix computations, 4th ed., Johns Hopkins Studies in the
Mathematical Sciences 3 (Johns Hopkins University Press, Dec. 2012).

32J. Poulson, B. Marker, R. A. van de Geijn, J. R. Hammond, and N. A. Romero, “Elemental:
a new framework for distributed memory dense matrix computations”, ACM Trans. Math.
Softw. 39, 13:1–13:24 (2013).

33E. R. Jessup and D. C. Sorensen, “A parallel algorithm for computing the singular value
decomposition of a matrix”, SIAM J. Matrix Anal. Appl. 15, 530–548 (1994).

34E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A.
Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK users’ guide, Third
(Society for Industrial and Applied Mathematics, Philadelphia, PA, 1999).

48

BIBLIOGRAPHY

35Q. Wang, X. Zhang, Y. Zhang, and Q. Yi, “Augem: automatically generate high performance
dense linear algebra kernels on x86 cpus”, in Proceedings of the international conference on
high performance computing, networking, storage and analysis, SC ’13 (2013), 25:1–25:12.

36K. Woolfe, Matrix product operator simulations of quantum algorithms, Aug. 2015.

37E. D. Napoli, D. Fabregat-Traver, G. Quintana-Ort́ı, and P. Bientinesi, “Towards an effi-
cient use of the blas library for multilinear tensor contractions”, Applied Mathematics and
Computation 235, 454–468 (2014).

38Y. Hirata, M. Nakanishi, S. Yamashita, and Y. Nakashima, “An efficient conversion of quan-
tum circuits to a linear nearest neighbor architecture”, Quantum Info. Comput. 11, 142–166
(2011).

39M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information: 10th an-
niversary edition, 10th (Cambridge University Press, New York, NY, USA, 2011).

40J. D. Hunter, “Matplotlib: a 2d graphics environment”, Computing in Science Engineering 9,
90–95 (2007).

41Itensor, http://itensor.org (visited on 09/30/2017).

42S. Al-Assam, S. R. Clark, and D. Jaksch, “The Tensor Network Theory Library”, ArXiv
e-prints (2016).

43T. Dierks and E. Rescorla, The transport layer security (tls) protocol version 1.2, RFC 5246,
http://www.rfc-editor.org/rfc/rfc5246.txt (RFC Editor, Aug. 2008).

44A. G. Fowler, S. J. Devitt, and L. C. L. Hollenberg, “Implementation of shor’s algorithm on
a linear nearest neighbour qubit array”, Quantum Info. Comput. 4, 237–251 (2004).

45M. Frigo, “A fast fourier transform compiler”, SIGPLAN Not. 39, 642–655 (2004).

46R. L. Graham, T. S. Woodall, and J. M. Squyres, “Open mpi: a flexible high performance
mpi”, in Parallel processing and applied mathematics: 6th international conference, ppam
2005, poznań, poland, september 11-14, 2005, revised selected papers, edited by R. Wyrzykowski,
J. Dongarra, N. Meyer, and J. Waśniewski (Springer Berlin Heidelberg, Berlin, Heidelberg,
2006), pp. 228–239.

47S. Beauregard, “Circuit for Shor’s algorithm using 2n+3 qubits”, eprint arXiv:quant-ph/0205095
(2002).

48C. Zalka, “Fast versions of Shor’s quantum factoring algorithm”, eprint arXiv:quant-ph/9806084
(1998).

49P. Gossett, “Quantum Carry-Save Arithmetic”, eprint arXiv:quant-ph/9808061 (1998).

50J. Proos and C. Zalka, “Shor’s discrete logarithm quantum algorithm for elliptic curves”,
Quantum Info. Comput. 3, 317–344 (2003).

51S. Aaronson, “P
?
= NP”, in Open problems in mathematics, edited by J. F. Nash Jr. and

M. T. Rassias (Springer International Publishing, Cham, 2016), pp. 1–122.

52S. Aaronson and A. Arkhipov, “The computational complexity of linear optics”, in Proceed-
ings of the forty-third annual acm symposium on theory of computing, STOC ’11 (2011),
pp. 333–342.

49

